Даны координаты точек М(x1;y1;z1) (-2;0;-4) и Р(x2;y2;z2) (1;0;7;) А) Найти координаты вектора MP . Б) Найти координаты середины отрезка МР. В) Найти расстояние между точками М и Р, округлив найденную величину до сотых.
Диагонали равны только у разновидностей параллелограмма : у прямоугольника и квадрата.
2) Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. ВЕРНО
3) В прямоугольной трапеции ровно один прямой угол. НЕВЕРНО
Боковая сторона, которая образует прямой угол с одним основанием трапеции, является перпендикуляром к двум параллельным основаниям, значит, она образует прямой угол со вторым основанием тоже. Всего в прямоугольной трапеции 2 прямых угла. Если в трапеции будет 4 прямых угла, то это будет прямоугольник.
Диагонали трапеции делят ее на 4 треугольника. Треугольники, прилегающие к основаниям трапеции, подобны по первому признаку подобия: "Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны", т.к <CAD=<ACB, а <BDA=<DBC как внутренние накрест лежащие при параллельных прямых AD и ВС и секущих АС и ВD соответственно. Итак, треугольники АОD и СОВ подобны с коэффициентом подобия ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7. ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.
1) Диагонали параллелограмма равны. НЕВЕРНО
Диагонали равны только у разновидностей параллелограмма : у прямоугольника и квадрата.
2) Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. ВЕРНО
3) В прямоугольной трапеции ровно один прямой угол. НЕВЕРНО
Боковая сторона, которая образует прямой угол с одним основанием трапеции, является перпендикуляром к двум параллельным основаниям, значит, она образует прямой угол со вторым основанием тоже. Всего в прямоугольной трапеции 2 прямых угла. Если в трапеции будет 4 прямых угла, то это будет прямоугольник.
4) Сумма углов четырёхугольника равна 360°. ВЕРНО
Итак, треугольники АОD и СОВ подобны с коэффициентом подобия
ВС/АD=5/7. Тогда АО/ОС=DO/OB=5/7.
ответ: диагональ трапеции разбивается другой диагональю на отрезки в отношении 5:7.