Условие должно быть таким: Из точки А к данной плоскости альфа проведены перпендикуляр АА1 и две наклонные АВ и АС. СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°. Найти расстояние между основаниями наклонных. Решение. Из прямоугольного треугольника АСА1: tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор) Из прямоугольного треугольника АВА1: АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ). Из прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16. ответ: расстояние ВС между основаниями наклонных равно 16.
СА1=4, угол АВА1=30°, угол АСА1=60°, а угол между наклонными 90°.
Найти расстояние между основаниями наклонных.
Решение.
Из прямоугольного треугольника АСА1:
tgC=AA1/A1C (отношение противолежащего катета к прилежащему). Тогда АА1=А1С*tg60° = 4√3. АС=√(АА1²+А1С²)=√(48+16)=8. (Пифагор)
Из прямоугольного треугольника АВА1:
АВ=2*АА1 = 8√3 (АА1 - катет против угла 30° и равен половине гипотенузы АВ).
Из прямоугольного треугольника АВС (<ВАС=90° - дано): ВС=√(АВ²+АС²)=√(64+192)=16.
ответ: расстояние ВС между основаниями наклонных равно 16.
AE - биссектриса A => BAE=EAD=a - обозначим
углы BKA=EKD как вертикальные
AKD+DKE = 180 как смежные
по т.синусов из треуг.BAK можно записать:
BK:sina = AB:sin(BKA)
по т.синусов из треуг.KAD можно записать:
KD:sina = AD:sinAKD = AD:sin(180-EKD) = AD:sin(EKD) = AD:sin(BKA)
т.к. sin(180-a) = sina в треугольнике
отсюда sin(BKA) = AD * sina / KD
BK:sina = AB:sin(BKA) => BK:sina = AB: (AD * sina / KD) = AB * KD / (AD * sina) =>
BK = AB * KD / AD
BK / KD = AB / AD = AB / BC (т.к. параллелограмм) = 4/9