Построим параллелограм АВСД, ВД-меньшая диагональ, угВАД=60, угВДА=30град. На сторону АД опустим высоту ВЕ, угАВЕ=30, т.к угВЕА=90, угВАЕ=60., угВЕД=60 град, т.к. ВЕД=90, а угВДЕ=30, тогда угАВД=угАВЕ+угЕВД=30+60=90, значит АВД-прямоуг треу, мы знаем, что сторона, в прямоуг треуг лежащая пропив угла 30 град= половине гипотен.,АД-гипотен=ВС=20, тогда АВ=АД/2=10. теперь рассмотрим треуг АВЕ, АЕ лежит против угла 30 град, знач =АВ/2, тоесть АЕ=10/2=5. Найдем ВЕ, ВЕ²=АВ²-АЕ² по теореме пифагора, ВЕ²=10²-5²=100-25=75 ВЕ=√75=5√3. Площадь параллелограмма равна S=h*a, где h-высота ВЕ, а-сторона, на которую опустили высоту а=АД=ВС S=ВЕ*АД=5√3*20=100√3
Равновеликие треугольники это значит что их площадь равна, вычисляем площадь треугольника МРК по трем сторонам используя формулу Герона: S=корень квадратный из p*(р-МР)*(р-РК)*(р-МК), где р это полупериметр, p=(МР+РК+КМ)/2=(9+10+17)/2=18, тогда S=корень квадратный из 18*9*8*1=36. Это мы нашли площадь треугольника МРК. Значит площадь треугольника АВС тоже 36 кв. см.
Теперь используем свойство высоты равнобедренного треугольника (В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой), значит проводим высоту СД. она делит основание пополам, значит АД=ДВ=12/2=6 см.
Теперь по формуле вычисления площади треугольника вычисляем длину высоты СД в треугольнике АВС: S=1/2 АВ*СД, значит 36=1/2*12*СД, СД=36/6=6 см.
Теперь мы знаем основание и высоту треугольника АВС, а по свойству углов равнобедренного треугольника мы знаем, что углы при основании равны и нам нужно найти только один угол в прямоугольном треугольнике АСД (угол СДА прямой, так как СД это высота). Если в прямоугольном треугольнике АСД мы знаем два катета АД=6 см и СД=6 см, это значит, что треугольник АСД равнобедренный. По свойствам суммы углов треугольника мы вычисляем сумму углов ДАС и АСД: 180-90=90 и делим пополам, так как эти углы равны 90/2=45. Итак, мы знаем угол САД (он же САВ), и он равен углу СВА и равен 45 градусов.
S=корень квадратный из p*(р-МР)*(р-РК)*(р-МК), где р это полупериметр, p=(МР+РК+КМ)/2=(9+10+17)/2=18, тогда S=корень квадратный из 18*9*8*1=36. Это мы нашли площадь треугольника МРК.
Значит площадь треугольника АВС тоже 36 кв. см.
Теперь используем свойство высоты равнобедренного треугольника (В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой), значит проводим высоту СД. она делит основание пополам, значит АД=ДВ=12/2=6 см.
Теперь по формуле вычисления площади треугольника вычисляем длину высоты СД в треугольнике АВС:
S=1/2 АВ*СД, значит 36=1/2*12*СД, СД=36/6=6 см.
Теперь мы знаем основание и высоту треугольника АВС, а по
свойству углов равнобедренного треугольника мы знаем, что углы при основании равны и нам нужно найти только один угол в прямоугольном треугольнике АСД (угол СДА прямой, так как СД это высота). Если в прямоугольном треугольнике АСД мы знаем два катета АД=6 см и СД=6 см, это значит, что треугольник АСД равнобедренный. По свойствам суммы углов треугольника мы вычисляем сумму углов ДАС и АСД: 180-90=90 и делим пополам, так как эти углы равны 90/2=45.
Итак, мы знаем угол САД (он же САВ), и он равен углу СВА и равен 45 градусов.