Даны координаты вершин пирамиды A1 (5, 5, 4), A2 (3, 8,4), A3 (3, 5, 10), A4 (5, 8, 2). Требуется найти: 1) уравнение прямой A1 A2, 2) угол между рёбрами A1 A2 и A1 A3, 3) уравнение плоскости A1 A2 A3, 4) уравнение и длину высоты, опущенной из вершины A4 на грань A1 A2 A3
ответ:Номер 1
Диагонали прямоугольника в точке пересечения делятся пополам
Треугольник АОВ равнобедренный
<АВО=<ВАО=42 градуса
<ВОА=180-42•2=180-84=96 градусов
<АОD=(360-96•2):2=168:2=84 градуса
Номер 2
<1=<2=90 градусов
<3=35 градусов
<4=180-35=145 градусов
Номер 3
Одна сторона 2Х
Вторая 3Х
2Х•2+3Х•2=30
10Х=30
Х=30:10
Х=3
Одна сторона 3•2=6 см
Вторая 3•3=9 см
Номер 4
Углы при большом основании
<1=<2=106:2=53 градуса
Углы при меньшем основании
(360-53•2):2=127 градусов
<3=<4=127 градусов
Объяснение:
Все грани параллелепипеда - параллелограммы.
1. Ребра параллелепипеда, которые лежат на параллельных прямых (три группы таких ребер):
AB ║ CD ║ C₁D₁ ║ A₁B₁
AD ║ BC ║ B₁C₁ ║ A₁D₁
AA₁ ║ BB₁ ║ CC₁ ║ DD₁
2. Ребра параллелепипеда, которые лежат на скрещивающихся прямых:
АВ и A₁D₁; AB и B₁C₁; AB и CC₁; AB и DD₁;
AD и A₁B₁; AD и C₁D₁; AD и BB₁; AD и CC₁;
CD и A₁D₁; СD и B₁C₁; CD и AA₁; CD и BB₁;
BC и A₁B₁; BC и C₁D₁; BC и AA₁; BC и DD₁;
AA₁ и B₁C₁; AA₁ и C₁D₁;
BB₁ и A₁D₁; BB₁ и C₁D₁;
CC₁ и A₁B₁; CC₁ и A₁D₁;
DD₁ и A₁B₁; DD₁ и B₁C₁.
3. Грани параллелепипеда, принадлежащие параллельным плоскостям:
ABCD и A₁B₁C₁D₁;
AA₁B₁B и CC₁D₁D;
AA₁D₁D и BB₁C₁C.
4. По прямой В₁С₁ пересекаются грани A₁B₁C₁D₁ и BB₁C₁C.