В трапеции ABCD боковая сторона AB равна диагонали BD. Точка M - середина диагонали AC. Прямая BM пересекает прямую CD в точке E. Докажите, что BE = CE.
Объяснение:
К - точка пересечения прямой ВМ с основанием AD.
Рассмотрим треугольники АМК и СМВ:
АМ = МС по условию,
∠АМК = ∠СМВ как вертикальные,
∠МАК = ∠МСВ как накрест лежащие при пересечении параллельных прямых АК и ВС секущей АС, ⇒
ΔАМК = ΔСМВ по стороне и двум прилежащим к ней углам.
Следовательно, АК = ВС.
Если в четырехугольнике две противолежащие стороны равны и параллельны, то это параллелограмм.
Значит, АВСК параллелограмм. ⇒ СК = АВ.
АВ = BD по условию, ⇒ СК = BD.
В трапеции KBCD диагонали равны, значит она равнобедренная.
Тогда ∠BKD = ∠CDK.
∠ЕВС = ∠BKD и ∠ЕСВ = ∠CDK как накрест лежащие при пересечении параллельных прямых KD и ВС секущими EК и ED соответственно, ⇒
∠EBC = ∠ECB.
Из этого следует, что треугольник ЕВС равнобедренный и
Опустим высоты BH1 и CH2. H1H2 = BC = O1O2 = 4, так как BCH2H1, BCO2O1 — прямоугольники. Пусть AH1 = k, тогда H2D = AD - AH1 - H1H2 = 1 - k.
Рассмотрим треугольники AH1B и EO1B: углы H1 и O1, A и E равны как соответственные — треугольники подобны по I признаку. Коэффициент подобия равен 1 : (1 + 3) = 1 : 4. Тогда EO1 = k / 4. Аналогично рассуждая, получим O2F = (1 - k) / 4.
EF = EO1 + O1O2 + O2F = k / 4 + 4 + (1 - k) / 4 = (k + 1 - k) / 4 + 4 = 1 / 4 + 4 = 4,25.
ответ: 4,25
В трапеции ABCD боковая сторона AB равна диагонали BD. Точка M - середина диагонали AC. Прямая BM пересекает прямую CD в точке E. Докажите, что BE = CE.
Объяснение:
К - точка пересечения прямой ВМ с основанием AD.
Рассмотрим треугольники АМК и СМВ:
АМ = МС по условию,
∠АМК = ∠СМВ как вертикальные,
∠МАК = ∠МСВ как накрест лежащие при пересечении параллельных прямых АК и ВС секущей АС, ⇒
ΔАМК = ΔСМВ по стороне и двум прилежащим к ней углам.
Следовательно, АК = ВС.
Если в четырехугольнике две противолежащие стороны равны и параллельны, то это параллелограмм.
Значит, АВСК параллелограмм. ⇒ СК = АВ.
АВ = BD по условию, ⇒ СК = BD.
В трапеции KBCD диагонали равны, значит она равнобедренная.
Тогда ∠BKD = ∠CDK.
∠ЕВС = ∠BKD и ∠ЕСВ = ∠CDK как накрест лежащие при пересечении параллельных прямых KD и ВС секущими EК и ED соответственно, ⇒
∠EBC = ∠ECB.
Из этого следует, что треугольник ЕВС равнобедренный и
ВЕ = СЕ.