Даны координаты вершин треугольника авс на плоскости.
составить уравнения сторон ab и вс и высоты cd и их длины.
определить величину угла b в радианах с точностью до двух знаков.
составить уравнение медианы ae и указать координаты точки к пересечения этой
медианы с высотой cd.
составить уравнение прямой, проходящей через точку к, параллельно стороне ab.
a(-7; -2), b(5: -11), c(9; 11).
2-Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами.
Замкнутую плоскую ломаную называют многоугольником.
Вершина - вершина угла, точка пересечения двух сторон.
Сторона - отрезок, соединяющий две его соседние вершины.
Диагональ - линия, проведенная из одного угла в другой.
Периметр - сумма длин всех сторон.
3-ыпуклым многоугольником называется многоугольник, обладающий тем свойством, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Это углы, образованные сторонами выпуклого многоугольника.
4-Сумма углов треугольника - 180 градусов.
Докажем, что сумма углов выпуклого n-угольника равна 180(n-2) градусам. Выберем одну из вершин и проведём из неё n-2 диагонали. Они разделят n-угольник на n-2 треугольника. Сумма углов каждого треугольника равна 180 градусам, сумма углов n-угольника равна сумме углов всех треугольников. Значит, сумма углов выпуклого n-угольника - 180(n-2) градусов, что и требовалось доказать.
Как выполнять построение, у Вас подробно указано в задаче.
Нет смысла повторять последовательность выполняемых действий.
Главное- от одной точки отрезка (точки а) начертить полупрямую (луч АС) наклонно к данному отрезку. От этой точки А отметить на нем нужное количество точек (в данном случае 11) на равном расстоянии друг от друга, соединить последнюю точку (С) со вторым концом отрезка . Через каждую точку провести прямые параллельно СВ.
Отрезок АВ будет разделен на 11 равных частей
Готовый чертеж будет выглядеть так, как на рисунке, данном в приложении.