Задача 1. P_MNK=a+b+c=36 дм, P_MNL = a+l+c/2=24 дм, P_MKL = b+l+c/2=20 дм. Сложим второе и третье уравнения. a+l+c/2+b+l+c/2=24 дм + 20 дм a+b+c+2l=44 дм. Отсюда l = (44 дм - (a+b+c))/2 = (44-36)/2 дм = 4 дм. Задача 2. ∠C=74°. Пусть ∠A=2α, ∠B=2β. Тогда ∠B=180°-∠C-∠A=180°-74°-2α=106°-2α=2β. Отсюда β=(106°-2α)/2=53°-α. Пусть искомый угол γ. Тогда α+β+γ=180°. γ=180°-(α+β)=180°-(α+53°-α)=127°. Задача 3. x+5=x^2 x^2-x-5=0 В любом случае это уравнение имеет 2 корня, поскольку это уравнение второй степени от одной переменной. Вопрос в том, действительные ли эти корни и являются ли они кратными. Корни квадратного уравнения являются комплексными, если дискриминант отрицателен. Корни квадратного уравнения являются кратными, если дискриминант равен 0 - в этом случае квадратное уравнение имеет два одинаковых корня. D=(-1)^2-4*1*(-5)=21 > 0 - уравнение имеет два различных действительных корня.
P_MNK=a+b+c=36 дм,
P_MNL = a+l+c/2=24 дм,
P_MKL = b+l+c/2=20 дм.
Сложим второе и третье уравнения.
a+l+c/2+b+l+c/2=24 дм + 20 дм
a+b+c+2l=44 дм.
Отсюда l = (44 дм - (a+b+c))/2 = (44-36)/2 дм = 4 дм.
Задача 2.
∠C=74°. Пусть ∠A=2α, ∠B=2β. Тогда ∠B=180°-∠C-∠A=180°-74°-2α=106°-2α=2β. Отсюда β=(106°-2α)/2=53°-α.
Пусть искомый угол γ. Тогда α+β+γ=180°. γ=180°-(α+β)=180°-(α+53°-α)=127°.
Задача 3.
x+5=x^2
x^2-x-5=0
В любом случае это уравнение имеет 2 корня, поскольку это уравнение второй степени от одной переменной. Вопрос в том, действительные ли эти корни и являются ли они кратными. Корни квадратного уравнения являются комплексными, если дискриминант отрицателен. Корни квадратного уравнения являются кратными, если дискриминант равен 0 - в этом случае квадратное уравнение имеет два одинаковых корня.
D=(-1)^2-4*1*(-5)=21 > 0 - уравнение имеет два различных действительных корня.
1. Сторона треугольника равна 6 см, а высота, проведенная к ней, в два раза больше стороны.
Объяснение: Сторона = 6 см
Высота 6*2 = 12 (В два раза больше)
Площадь треугольника = Произведению основания на высоту и делённое на два.
Получаем: (6*12)/2 = 36
2. Катеты прямоугольного треугольника равны 3 см и 4 см. Найдите гипотенузу и площадь треугольника.
Объяснение: c²=a²+b²
c²=9+16
c²=25
c=5 см.
Sтреугольника = (3*4)/2 = 6 см.
5. Выписать формулы для нахождения площади
прямоугольника, треугольника , параллелограмма, ромба,
квадрата, трапеции.
Объяснение: