Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Касательные имеют теорему: радиус, проведённый с точки касания до центра окружности — перпендикулярен её касательной.
То есть:
Так что, треугольники COB & OAB — прямоугольные.
Нам известна гипотенуза OB, равна 24см, и катет CB — равный 12см.
Что-что!?, что мы замечаем? Гипотенуза OB в 2 раза больше катета CB?
Правильно:
Теорема о 30-градусном угле прямоугольного треугольника такова: катет, противолежащий углу 30-градусов — равен половине гипотенузы.
Теорема действует и в обратном порядке: Если катет равен половине гипотенузы, то ему прилежащий угол равен 30°, что и означает, что:
Теорема о 2 касательных, проведённых с одной точки таков: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
Значит OB — биссектриса, что и означает, что <B = 30*2 = 60°.
Касательные имеют теорему: радиус, проведённый с точки касания до центра окружности — перпендикулярен её касательной.
То есть:
Так что, треугольники COB & OAB — прямоугольные.
Нам известна гипотенуза OB, равна 24см, и катет CB — равный 12см.
Что-что!?, что мы замечаем? Гипотенуза OB в 2 раза больше катета CB?
Правильно:
Теорема о 30-градусном угле прямоугольного треугольника такова: катет, противолежащий углу 30-градусов — равен половине гипотенузы.
Теорема действует и в обратном порядке: Если катет равен половине гипотенузы, то ему прилежащий угол равен 30°, что и означает, что:
Теорема о 2 касательных, проведённых с одной точки таков: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
Значит OB — биссектриса, что и означает, что <B = 30*2 = 60°.
Вывод: угол между касательными равен 60°.