Дано:
а = 6 см - меньшее основание трапеции
α = 120° - тупой угол трапеции
γ = 30° - угол между диагональю трапеции и основанием
Найти:
b - большее основание трапеции
β = 180° - α = 180° - 120° = 60° - острый угол трапеции
Поскольку диагональ образует с основаниями угол γ = 30°, то угол ζ между боковой стороной и диагональю равен
ζ = β - γ = 60° - 30° = 30°
Треугольник, образованный диагональю, боковой стороной и меньшим основанием, является равнобедренным, поскольку
угол ζ = углу γ = 30°
Поэтому боковая сторона с равна меньшему основанию а
с = а = 6 см
Тогда проекция cb боковой стороны с на большее основание b равна
сb = c · cos β = 6 · 0.5 = 3 (см)
b = a + 2cb
b = 6 + 2 · 3 = 12 (cм)
Большее основание трапеции 12 см
Условие задачи не совсем полное. Должно быть так:
∠2 = 50°, ∠1 = 130°, ∠4 на 42° меньше, чем ∠3.
Найдите: ∠3, ∠4, ∠5.
∠6 = 180° - ∠1 по свойству смежных углов,
∠6 = 180° - 130° = 50°.
∠6 = ∠2 = 50°, а эти углы - соответственные при пересечении прямых а и b секущей с, значит
а║b.
∠7 = ∠3 как вертикальные, а угол 4 на 42° меньше, чем угол 3 по условию, значит и
∠7 - ∠4 = 42°
Пусть ∠4 = х, тогда ∠7 = х + 42°.
∠4 + ∠7 = 180° так как это односторонние углы при пересечении параллельных прямых а и b секущей d.
x + x + 42° = 180°
2x = 180° - 42°
2x = 138°
x = 69°
∠4 = 69°, ∠3 = ∠7 = 69° + 42° = 111°
∠5 = ∠7 = 111° как соответственные при пересечении параллельных прямых а и b секущей d.
Дано:
а = 6 см - меньшее основание трапеции
α = 120° - тупой угол трапеции
γ = 30° - угол между диагональю трапеции и основанием
Найти:
b - большее основание трапеции
β = 180° - α = 180° - 120° = 60° - острый угол трапеции
Поскольку диагональ образует с основаниями угол γ = 30°, то угол ζ между боковой стороной и диагональю равен
ζ = β - γ = 60° - 30° = 30°
Треугольник, образованный диагональю, боковой стороной и меньшим основанием, является равнобедренным, поскольку
угол ζ = углу γ = 30°
Поэтому боковая сторона с равна меньшему основанию а
с = а = 6 см
Тогда проекция cb боковой стороны с на большее основание b равна
сb = c · cos β = 6 · 0.5 = 3 (см)
b = a + 2cb
b = 6 + 2 · 3 = 12 (cм)
Большее основание трапеции 12 см
Условие задачи не совсем полное. Должно быть так:
∠2 = 50°, ∠1 = 130°, ∠4 на 42° меньше, чем ∠3.
Найдите: ∠3, ∠4, ∠5.
∠6 = 180° - ∠1 по свойству смежных углов,
∠6 = 180° - 130° = 50°.
∠6 = ∠2 = 50°, а эти углы - соответственные при пересечении прямых а и b секущей с, значит
а║b.
∠7 = ∠3 как вертикальные, а угол 4 на 42° меньше, чем угол 3 по условию, значит и
∠7 - ∠4 = 42°
Пусть ∠4 = х, тогда ∠7 = х + 42°.
∠4 + ∠7 = 180° так как это односторонние углы при пересечении параллельных прямых а и b секущей d.
x + x + 42° = 180°
2x = 180° - 42°
2x = 138°
x = 69°
∠4 = 69°, ∠3 = ∠7 = 69° + 42° = 111°
∠5 = ∠7 = 111° как соответственные при пересечении параллельных прямых а и b секущей d.