Даны прямоугольник ABCO, диагональ которого 12 см 2 и утол между диагональю и стороной 30°, и окружность с центром в точке О радиуса 5 см. Какие из прямых ОА, АВ, А ВС и АС являются секущими по отношению к этой окружности?
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
. Измерения равны a,a,2a, тогда , тогда измерения равны 2,2,4. Рассмотрим прямоугольный треугольник, в нем одна сторона - диагональ, другая - диагональ квадрата основания, третья - боковое ребро, тогда его стороны равны 2\sqrt{6}. Синус угла равен отношению бокового ребра к диагонали, то есть
Чтобы найти синус угла между диагональю параллелепипеда и плоскостью основания, нужно рассмотреть прямоугольный треугольник, в котором этот угол находится, чтобы потом его оттуда найти. В данном случае стоит рассмотреть прямоугольный треугольник, в котором одна сторона - диагональ основания, другая - диагональ параллелепипеда, а третья - боковое ребро. В нем как раз будет нужный нам угол.
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75
И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см
ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
. Измерения равны a,a,2a, тогда , тогда измерения равны 2,2,4. Рассмотрим прямоугольный треугольник, в нем одна сторона - диагональ, другая - диагональ квадрата основания, третья - боковое ребро, тогда его стороны равны 2\sqrt{6}. Синус угла равен отношению бокового ребра к диагонали, то есть
Чтобы найти синус угла между диагональю параллелепипеда и плоскостью основания, нужно рассмотреть прямоугольный треугольник, в котором этот угол находится, чтобы потом его оттуда найти. В данном случае стоит рассмотреть прямоугольный треугольник, в котором одна сторона - диагональ основания, другая - диагональ параллелепипеда, а третья - боковое ребро. В нем как раз будет нужный нам угол.