Даны шесть отрезков длиной 5см; шесть отрезков длиной 8см; шесть отрезков длиной 12см. С использованием нескольких этих отрезков сконструирована треугольная прямая призма. Рёбра, которой построены из одного отрезка выбранной длины. Вычисли максимальный возможный объём этой призмы Запиши, чему равны cтороны основания призмы (в возрастающем/неубывающем порядке):
Высота призмы равна
ответ:5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
Объяснение:
5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
1) Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно между ними. FH ⊥ЕD.
∠Н=∠C=90°
Искомое расстояние - длина отезка FH.
Т.к. ЕF биссектриса, в прямоугольных треугольниках ∆ СЕF и ∆ HЕF
∠СЕF=∠HEF, EF- общая гипотенуза.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
∆ СЕF=∆ HЕF Сходственные элементы равных треугольников равны. =>
FH=FC=13 см.
2) Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен. (2 картинка)
3) задание на картинке
Объяснение: