Даны смежные углы АОС и ВОС. При повороте вокруг точки О на угол а (а < 180°) луч ОА отобразился на луч ОС, а луч ОС — на луч ОВ. Докажите, что а = 90°.
4) подходит А и Б, так как оба этих графика пересекают ось у в положительном значении у( выше оси Х)
5) подходит В, так как пересекает ось у в отрицательном значении у( ниже оси Х)
6) а-3, так как график параллелен оси Х, значит коэффициент к=0, коэффициент b>0, так как пересекает ось у в положительном значении у (выше оси Х)
б-1, так как функция убывает, а значит коэффициент к<0, коэффициент b> 0 так как график функции пересекает ось у в положительном значении у (выше оси Х)
в-2, так как функции возрастает, значит коэффициент к>0, коэффициент b<0, так как график функции пересекает ось у в отрицательном значении у (ниже оси Х)
4) А и Б
5) В
6) А-3; Б-1; В-2
Объяснение:
4) подходит А и Б, так как оба этих графика пересекают ось у в положительном значении у( выше оси Х)
5) подходит В, так как пересекает ось у в отрицательном значении у( ниже оси Х)
6) а-3, так как график параллелен оси Х, значит коэффициент к=0, коэффициент b>0, так как пересекает ось у в положительном значении у (выше оси Х)
б-1, так как функция убывает, а значит коэффициент к<0, коэффициент b> 0 так как график функции пересекает ось у в положительном значении у (выше оси Х)
в-2, так как функции возрастает, значит коэффициент к>0, коэффициент b<0, так как график функции пересекает ось у в отрицательном значении у (ниже оси Х)
А₁А₂ = 2 см
Объяснение:
Если две параллельные плоскости пересечены третьей, то линии пересечения параллельны.
Пересекающиеся прямые А₁В₁ и А₂В₂ задают плоскость, которая пересекает плоскости α и β по прямым А₁А₂ и В₁В₂, значит
А₁А₂ ║ В₁В₂.
Тогда ∠МВ₁В₂ = ∠МА₁А₂ как накрест лежащие при пересечении параллельных прямых А₁А₂ и В₁В₂ секущей А₁В₁,
∠В₁МВ₂ = ∠А₁МА₂ как вертикальные, значит
ΔВ₁МВ₂ подобен ΔА₁МА₂ по двум углам.
МВ₂ = А₂В₂ - МА₂ = 10 - 4 = 6 см
Пусть А₁А₂ = х, тогда В₁В₂ = х + 1,
6x = 4(x + 1)
6x = 4x + 4
2x = 4
x = 2
А₁А₂ = 2 см