В ромбе диагонали точкой пересечения делятся пополам (АО=ОС и ВО=OD).
Пусть ВО=х, тогда:
AC-BD=14
AC-2x=14
AC=14+2x
2·OC=2(x+7)
OC=x+7
Из ΔBCO по т. Пифагора:
x=-15 не подходит по смыслу задачи, поэтому один корень х=8.
ВО=х=8 см
ОС=х+7=8+7=15 см
АС=АО+ОС=15+15=30 см
BD=BO+OD=8+8=16 см
Вспомним такую формулу: , где d₁, d₂ - диагонали параллелограмма(у нас ромб, а ромб-это тоже параллелограмм), a, b - стороны параллелограмма(у нас ромб, поэтому a=b).
Найдем диагонали, составив систему:
Пусть АС=х, BD=y.
Отрицательные значения нам не подходят, так как длинна - величина неотрицательная.
1) а) Найдем углы в треугольнике АСО. Угол АОС равен (180-128)/2.
Т.к. односторонние сумма углов равна 180 градусам. А биссектриса делит угол пополам.
Угол САО равен 128. Т.к. его вертикальный угол равен 128, а вертикальные углы равны. А сумма односторонних углов равна 180. Следовательно угол А=128.
Посчитаем угол АСО. Сумма углов треугольника равна 180 градусом. 180-128-26=26.
Углы при основании равны. Значит треугольник АСО равнобедренные, а его боковые стороны АС и АО равны. Чтд.
б) 26
2)
Объяснение:
В ромбе диагонали точкой пересечения делятся пополам (АО=ОС и ВО=OD).
Пусть ВО=х, тогда:
AC-BD=14
AC-2x=14
AC=14+2x
2·OC=2(x+7)
OC=x+7
Из ΔBCO по т. Пифагора:
x=-15 не подходит по смыслу задачи, поэтому один корень х=8.
ВО=х=8 см
ОС=х+7=8+7=15 см
АС=АО+ОС=15+15=30 см
BD=BO+OD=8+8=16 см
Вспомним такую формулу: , где d₁, d₂ - диагонали параллелограмма(у нас ромб, а ромб-это тоже параллелограмм), a, b - стороны параллелограмма(у нас ромб, поэтому a=b).
Найдем диагонали, составив систему:
Пусть АС=х, BD=y.
Отрицательные значения нам не подходят, так как длинна - величина неотрицательная.
Тогда AC=x=30см, BD=y=16см.
ответ: