Отрезки касательных, проведенных к окружности равны. Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д; стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см; ДС=24 см; рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см; рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см; рассм. касательные, проведенные из т.В - ВК=ВД=1см; отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит Р=6+25+29=60см - это ответ.
Построим параллелограмм АВСД - короткие стороны АВ||СД и большие стороны ВС||АД, диагонали АС и ВД. Т.к. диагонали параллелограмма в точке пересечения О делятся пополам, то вначале нужно построить треугольник АОД по 3 сторонам: 1) провести горизонтальную прямую и на ней отложить отрезок АД (большая сторона параллелограмма); 2) с центром в точке А проведем окружность радиусом равным длине половины диагонали АС; 3) с центром в точке Д проведем окружность радиусом равным длине половины диагонали ВД; 4) пересечение двух окружностей будет точка О; 5) соединим прямыми точки А, О и Д. После того как построили треугольник АОД, далее на продолжении стороны АО откладываем такой же отрезок ОС=АО, а на продолжении стороны ДО откладываем отрезок ОВ=ДО. Соединим прямыми точки А, В, С и Д - получится параллелограмм АВСД.
Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д;
стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см;
ДС=24 см;
рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см;
рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см;
рассм. касательные, проведенные из т.В - ВК=ВД=1см;
отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит
Р=6+25+29=60см - это ответ.