В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
tupoybolgarskiy
tupoybolgarskiy
21.12.2020 00:44 •  Геометрия

Даны точки: a(1; 2; 3), b(5; -1; 2), c(0; 1; 1), d(-4; 3; 5). доказать, что данные точки вершины пирамиды.

Показать ответ
Ответ:
hameleon5
hameleon5
04.08.2020 21:24

Доказательством, что данные точки - это вершины пирамиды, служит несоответствие координат четвёртой точки уравнению плоскости, которой принадлежат другие три точки.

Составим уравнение плоскости, которой принадлежат точки А, В и С.

Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно.                Тогда уравнение плоскости определяется из уравнения:

(x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.

Подставив заданные координаты точек, получаем:

5x + 9y - 7z - 2 = 0 .

Подставим координаты точки Д:

5*(-4) + 9*3 - 7*5 - 2 = -20 + 27 - 35 - 2 = -30.

То есть не равно нулю. Значит, точка Д не принадлежит плоскости точек А, В и С - это вершина пирамиды.



             

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота