Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Halkjh
19.12.2021 20:44 •
Геометрия
ДАНЫ ТОЧКИ А(1;-2) В(3;6) С(5;-2) А) Найдите координаты векторов: АВ, СВ, АС, ВА и их длины.
Б) Найдите координаты середины отрезков: АВ, СВ, АС
Показать ответ
Ответ:
trollotrollovit
10.01.2024 09:55
Для начала нам необходимо определить координаты векторов АВ, СВ, АС и ВА.
А) Для нахождения координат вектора нужно вычислить разность координат точек, через которые он проходит.
1. Координаты вектора АВ:
Для этого вычислим разность координат:
АВ = (x2 - x1, y2 - y1) = (3 - 1, 6 - (-2)) = (2, 8)
Таким образом, координаты вектора АВ - (2, 8).
2. Координаты вектора СВ:
СВ = (x2 - x1, y2 - y1) = (5 - 3, -2 - 6) = (2, -8)
Таким образом, координаты вектора СВ - (2, -8).
3. Координаты вектора АС:
АС = (x2 - x1, y2 - y1) = (5 - 1, -2 - (-2)) = (4, 0)
Таким образом, координаты вектора АС - (4, 4).
4. Координаты вектора ВА:
ВА = (x2 - x1, y2 - y1) = (1 - 3, -2 - 6) = (-2, -8)
Таким образом, координаты вектора ВА - (-2, -8).
Теперь необходимо найти длины данных векторов.
Для нахождения длины вектора мы используем формулу:
Длина вектора = √(x^2 + y^2)
1. Длина вектора АВ:
Длина АВ = √(2^2 + 8^2)
= √(4 + 64)
= √68
≈ 8,25
Таким образом, длина вектора АВ ≈ 8,25.
2. Длина вектора СВ:
Длина СВ = √(2^2 + (-8)^2)
= √(4 + 64)
= √68
≈ 8,25
Таким образом, длина вектора СВ ≈ 8,25.
3. Длина вектора АС:
Длина АС = √(4^2 + 0^2)
= √(16 + 0)
= √16
= 4
Таким образом, длина вектора АС = 4.
4. Длина вектора ВА:
Длина ВА = √((-2)^2 + (-8)^2)
= √(4 + 64)
= √68
≈ 8,25
Таким образом, длина вектора ВА ≈ 8,25.
Б) Теперь мы должны найти координаты середины отрезков АВ, СВ, АС.
1. Координаты середины отрезка АВ:
Для этого мы используем формулу:
xср = (x1 + x2) / 2
yср = (y1 + y2) / 2
xср = (1 + 3) / 2
= 4 / 2
= 2
yср = (-2 + 6) / 2
= 4 / 2
= 2
Таким образом, координаты середины отрезка АВ - (2, 2).
2. Координаты середины отрезка СВ:
xср = (3 + 5) / 2
= 8 / 2
= 4
yср = (6 + (-2)) / 2
= 4 / 2
= 2
Таким образом, координаты середины отрезка СВ - (4, 2).
3. Координаты середины отрезка АС:
xср = (1 + 5) / 2
= 6 / 2
= 3
yср = (-2 + (-2)) / 2
= -4 / 2
= -2
Таким образом, координаты середины отрезка АС - (3, -2).
Таким образом, явно было изложено, как найти координаты векторов, их длины, а также координаты середины отрезков.
0,0
(0 оценок)
Популярные вопросы: Геометрия
Kate00013
10.06.2020 01:17
Начертите произвольный отрезок сd и постройте на нем точку е такую,что се: еd=1 :...
LoliTyan1
10.01.2023 00:41
Найдите координаты ab, если a(-5,4) b(-8,-4)...
juliabatrukova
10.01.2023 00:41
Дано куб. діагональ його грані 2√2 см. знайти об єм і площу поверхні....
danil123456789102
30.08.2020 08:48
Вравносторонний трапеции abcd ad и вс - основания. угол ваd = 60 градусов, аd = 13 см, вс = 5 см. найдите боковую сторону трапеции....
napol2011
24.07.2022 12:28
Ну прям (с рисунком ,рисунок нужен ! ) 1. через точку а окружности проведены диаметр ас и две хорды ав и аd, равные радиусу этой окружности. найдите углы четырехугольника авсd и...
Samsas
24.07.2022 12:28
На продолжении стороны ad параллелограмма abcd заточкой d отмечена точка e так,что dc=de.наидите больший угол параллелограмма abcd,если & angle,dec=27градусов. ответ дайте в...
EeOneGuy1997
05.03.2021 12:10
Дан выпуклый четырехугольник abcd. сторона ав точками m и n разделена на 3 равные части, сторона cd разделена точками k и l также на 3 равные части. докажите, что площадь выпуклого...
yekaterinak977
05.03.2021 12:10
Площадь осевого сечения цилиндра равна 24, найдите площадь. боковой поверхности цилиндра . , деленную на п....
gameshow34
17.08.2020 19:34
Докажите что площадь равностороннего треугольника вычисляется по формуле s равно а квадрат корень из трех деленное на 4 где а сторона треугольника найдите площадь равностороннего...
urazukov
17.08.2020 19:34
Дачный участок имеет форму прямоугольника, стороны которого равны 30м и 20...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
А) Для нахождения координат вектора нужно вычислить разность координат точек, через которые он проходит.
1. Координаты вектора АВ:
Для этого вычислим разность координат:
АВ = (x2 - x1, y2 - y1) = (3 - 1, 6 - (-2)) = (2, 8)
Таким образом, координаты вектора АВ - (2, 8).
2. Координаты вектора СВ:
СВ = (x2 - x1, y2 - y1) = (5 - 3, -2 - 6) = (2, -8)
Таким образом, координаты вектора СВ - (2, -8).
3. Координаты вектора АС:
АС = (x2 - x1, y2 - y1) = (5 - 1, -2 - (-2)) = (4, 0)
Таким образом, координаты вектора АС - (4, 4).
4. Координаты вектора ВА:
ВА = (x2 - x1, y2 - y1) = (1 - 3, -2 - 6) = (-2, -8)
Таким образом, координаты вектора ВА - (-2, -8).
Теперь необходимо найти длины данных векторов.
Для нахождения длины вектора мы используем формулу:
Длина вектора = √(x^2 + y^2)
1. Длина вектора АВ:
Длина АВ = √(2^2 + 8^2)
= √(4 + 64)
= √68
≈ 8,25
Таким образом, длина вектора АВ ≈ 8,25.
2. Длина вектора СВ:
Длина СВ = √(2^2 + (-8)^2)
= √(4 + 64)
= √68
≈ 8,25
Таким образом, длина вектора СВ ≈ 8,25.
3. Длина вектора АС:
Длина АС = √(4^2 + 0^2)
= √(16 + 0)
= √16
= 4
Таким образом, длина вектора АС = 4.
4. Длина вектора ВА:
Длина ВА = √((-2)^2 + (-8)^2)
= √(4 + 64)
= √68
≈ 8,25
Таким образом, длина вектора ВА ≈ 8,25.
Б) Теперь мы должны найти координаты середины отрезков АВ, СВ, АС.
1. Координаты середины отрезка АВ:
Для этого мы используем формулу:
xср = (x1 + x2) / 2
yср = (y1 + y2) / 2
xср = (1 + 3) / 2
= 4 / 2
= 2
yср = (-2 + 6) / 2
= 4 / 2
= 2
Таким образом, координаты середины отрезка АВ - (2, 2).
2. Координаты середины отрезка СВ:
xср = (3 + 5) / 2
= 8 / 2
= 4
yср = (6 + (-2)) / 2
= 4 / 2
= 2
Таким образом, координаты середины отрезка СВ - (4, 2).
3. Координаты середины отрезка АС:
xср = (1 + 5) / 2
= 6 / 2
= 3
yср = (-2 + (-2)) / 2
= -4 / 2
= -2
Таким образом, координаты середины отрезка АС - (3, -2).
Таким образом, явно было изложено, как найти координаты векторов, их длины, а также координаты середины отрезков.