В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC. Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97) Далее по т-ме Пифагора находим BH: BH^2=10^2+6^2; BH=2sqrt(34).
Решение задачи начинаем с рисунка. Постараемся сделать его по возможности соразмерным данным задачи.
АС=3 АВ АМ=МС - так как медиана ВМ делит АС пополам, ∠ВАР=∠РАС, так как АВ биссектриса и делит угол А пополам. ( В решении равенство углов не пригодится). Для того, чтобы проще было следить за решением, обозначим площадь ᐃ АВС=S
Площади треугольников с равной высотой и равными основаниями равны. Так как АМ=МС, а высота у них одна и та же,
площадь ᐃ АВМ=площади ᐃ МВС=0,5 S
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Следовательно, ВР:РС=АВ:АС=1:3
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Площади Δ ВАР и Δ РАС, имеющих общую высоту, относятся как 1:3 Площадь АВС=S =4 площади треугольника ВАР.
Площадь Δ ВАР=1/4S=0,25 S ⇒ площадь Δ РАС =S- 0,25 S = 0, 75 S
Отсюда ВК:КМ=АВ:1,5 АВ (смотри свойство биссектрисы внутреннего угла треугольника) ВК:КМ=1:1,5
Площадь Δ АВМ= 0,5 S 0,5 S= площадь треугольника МАК+КАВ=2,5 площ Δ КАВ Площадь Δ BАК=0,5 S:2,5= 0,2 S Площадь Δ МАК=1,5 площ. КАВ =0,2*1,5= 0,3 S Площ. МКРС=пл РАС - пл МАК
Площ. МКРС=0,75 S - 0,3 S= 0,45 S Площадь Δ МАК : площ. МКРС=0,3 S : 0,45 S= 10/15=2/3
В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC.
Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97)
Далее по т-ме Пифагора находим BH:
BH^2=10^2+6^2; BH=2sqrt(34).
Отсюда по т-ме косинусов в тр-ке DBH считаем BD:
BD^2=(2sqrt(34)^2+sqrt(97)^2-2*2sqrt(34)*sqrt(97)*cos(60))=
BD^2=136+97-2*sqrt(3298)=233-2sqrt(3298).
Далее можно упростить при желании.
Проверьте на всякий случай арифметику.
Решение задачи начинаем с рисунка.
Постараемся сделать его по возможности соразмерным данным задачи.
АС=3 АВ
АМ=МС - так как медиана ВМ делит АС пополам,
∠ВАР=∠РАС, так как АВ биссектриса и делит угол А пополам. ( В решении равенство углов не пригодится).
Для того, чтобы проще было следить за решением, обозначим площадь ᐃ АВС=S
Площади треугольников с равной высотой и равными основаниями равны.
Так как АМ=МС, а высота у них одна и та же,
площадь ᐃ АВМ=площади ᐃ МВС=0,5 S
Биссектриса внутреннего угла треугольника делит противоположную
сторону в отношении, равном отношению двух прилежащих сторон
Следовательно, ВР:РС=АВ:АС=1:3
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Площади Δ ВАР и Δ РАС, имеющих общую высоту, относятся как 1:3
Площадь АВС=S =4 площади треугольника ВАР.
Площадь Δ ВАР=1/4S=0,25 S
⇒ площадь Δ РАС =S- 0,25 S = 0, 75 S
Рассмотрим треугольник АВМ.
АК- биссектриса угла АВМ
АМ=АС:2=3 АВ:2=1,5 АВ
Отсюда ВК:КМ=АВ:1,5 АВ (смотри свойство биссектрисы внутреннего угла треугольника)
ВК:КМ=1:1,5
Площадь Δ АВМ= 0,5 S
0,5 S= площадь треугольника МАК+КАВ=2,5 площ Δ КАВ
Площадь Δ BАК=0,5 S:2,5= 0,2 S
Площадь Δ МАК=1,5 площ. КАВ =0,2*1,5= 0,3 S
Площ. МКРС=пл РАС - пл МАК
Площ. МКРС=0,75 S - 0,3 S= 0,45 S
Площадь Δ МАК : площ. МКРС=0,3 S : 0,45 S= 10/15=2/3