Ну очевидно, что длина ребра равна 6 см, а половины ребра 3 см. Скрещивающимися являются любое вертикальное ребро и две пары горизонтальных ребер (два ребра на верхнем и два ребра на нижнем основаниях, не пересекающиеся с данным вертикальным ребром. Расстояние между их серединами равно √(3^2+6^2+3^2)=√(54)=3*√(6) см. Чтоб было понятнее, представь, что куб разрезан пополам плоскостью, параллельной одной из граней. Получившаяся пластинка снова разрезана пополам, но плоскостью, параллельной другой грани. Получился параллелепипед с размерами 3х3х6 см. Искомое расстояние является диагональю этого параллелепипеда.
1 Δcpb, Δzpd, Δzbe подобны по трём одинаковым углам, а значит, их соответствующие стороны, а также разности соответствующих сторон относятся как коэффициент подобия/ Но можно и так PC:AD = PC:CB = tg(35°) BP:DE = tg(35°) 2 AE = 5cos(35°) AD = 5sin(35°) PC/CB = tg(35°) PC = CB*tg(35°) = AD*tg(35°) = 5sin(35°)tg(35°) -- S = 1/2*(PD + BE)AD = PD = CD - CP = 5sin(35°) - 5sin(35°)tg(35°) BE = AB + AE = 5sin(35°) + 5cos(35°) S = 1/2(5sin(35°) - 5sin(35°)tg(35°) + 5sin(35°) + 5cos(35°))5sin(35°) = 25/2(2sin(35°) - sin(35°)tg(35°) + cos(35°))sin(35°)
Δcpb, Δzpd, Δzbe подобны по трём одинаковым углам, а значит, их соответствующие стороны, а также разности соответствующих сторон относятся как коэффициент подобия/
Но можно и так
PC:AD = PC:CB = tg(35°)
BP:DE = tg(35°)
2
AE = 5cos(35°)
AD = 5sin(35°)
PC/CB = tg(35°)
PC = CB*tg(35°) = AD*tg(35°) = 5sin(35°)tg(35°)
--
S = 1/2*(PD + BE)AD =
PD = CD - CP = 5sin(35°) - 5sin(35°)tg(35°)
BE = AB + AE = 5sin(35°) + 5cos(35°)
S = 1/2(5sin(35°) - 5sin(35°)tg(35°) + 5sin(35°) + 5cos(35°))5sin(35°) = 25/2(2sin(35°) - sin(35°)tg(35°) + cos(35°))sin(35°)