Даны точки А(2;-1),B(4;1),C(1;2) постройте на четырех различных чертежах: а)отрезок А1 B1 симетричны отрезку AB относительно точки C б) Отрезок А2 B2 симметричен отрезку AC относительно оси AB
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Во по геометрии ОЧЕНЬ К плоскости ромба ABCD, у которого угол А равен 45, АВ=8см градусов, проведен перпендикуляр МС длиной 7см. Найдите расстояние от точки М до прямой
построй рисунок ---начни с угла А=45---углы В С D
точка М висит над углом С---найти расстояние от М до АВ
сделай дополнительное построение---над вершиной D построй точку М1
(это параллельный перенос)---тогда М1D=MC=7см---из вершины D опусти перпендикуляр на АВ в точку К (это расстояние от D до АВ)--тогда DK это
проекция М1К на плоскость ромба--это и есть расстояние от т. М(М1)
до прямой АВ
теперь длина М1К=
треуг.АКD прямоугольн.--угол К =90--угол А=45
сторона АD=8см, т.к. все стороны ромба равны--тогда КD=AD*sin45=8*√2/2=4√2 см
треуг.КDM1 прямоугольн---угол КDM1=90(это перпендикуляр к плоскости)
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
nu
Online-Otvet.ru
Поиск по во Категории
Задать во О проекте
Обратная связь
home Во и ответы folder Геометрия
kndeta
kndeta
Во по геометрии ОЧЕНЬ К плоскости ромба ABCD, у которого угол А равен 45, АВ=8см градусов, проведен перпендикуляр МС длиной 7см. Найдите расстояние от точки М до прямой
построй рисунок ---начни с угла А=45---углы В С D
точка М висит над углом С---найти расстояние от М до АВ
сделай дополнительное построение---над вершиной D построй точку М1
(это параллельный перенос)---тогда М1D=MC=7см---из вершины D опусти перпендикуляр на АВ в точку К (это расстояние от D до АВ)--тогда DK это
проекция М1К на плоскость ромба--это и есть расстояние от т. М(М1)
до прямой АВ
теперь длина М1К=
треуг.АКD прямоугольн.--угол К =90--угол А=45
сторона АD=8см, т.к. все стороны ромба равны--тогда КD=AD*sin45=8*√2/2=4√2 см
треуг.КDM1 прямоугольн---угол КDM1=90(это перпендикуляр к плоскости)
КМ1-гипотенуза КМ1=√(М1D)^2+(DK)^2=√( 7^2+(4√2)^2)=√49+32=√81=9см
расстояние от точки М до прямой АВ ==9см