Даны точки А( 2; -1), B(-4; 3), C(5; -1), D(1; а). а) При каком значении а векторы AB и CD коллинеарны. b) При каком значении а векторы AB и CD перпендикулярны.
ответ: Странное у тебя условие: выбрать ВЕРНЫЕ утверждения, но записать в ответ НЕВЕРНЫЕ.
ВЕРНЫЕ утверждения: 1359
НЕВЕРНЫЕ утверждения: 2467810
Объяснение:
Первое утверждение верное, так как логарифм определен на промежутке(0;+Беск), других ограничений нет на функцию, значит она определена именно на этом промежутке
Второе утверждение неверное исходя из первого
Третье утверждение верное, так как точка 0,5 является точкой максимума функции. Найдя производную и приравняв к нулю, получим (0)+[0,5]- что и доказывает данное утверждение
Четвертое утверждение неверное исходя из третьего
Пятое утверждение верное исходя из третьего
Шестое утверждение неверное исходя из третьего и пятого
Седьмое утверждение неверное т.к. при поиске производной мы найдем значение х =0,5 что является экстремумом функции
Восьмое утверждение неверное из седьмого
Девятое утверждение верное(доказал в третьем утверждении)
Десятое утверждение неверное так как точка 1 не является точкой экстремума
1. Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1. S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r. значит можно. 2. Не может. k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ . Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂. CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃. DB =BE ⇒k₂ =2k₁ ; EC =CF ⇒k₃ =2k₂ =4k₁ . AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁ ⇒ AB+BC< AC ,что невозможно.
Если : AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁. BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂. DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.
ответ: Странное у тебя условие: выбрать ВЕРНЫЕ утверждения, но записать в ответ НЕВЕРНЫЕ.
ВЕРНЫЕ утверждения: 1359
НЕВЕРНЫЕ утверждения: 2467810
Объяснение:
Первое утверждение верное, так как логарифм определен на промежутке(0;+Беск), других ограничений нет на функцию, значит она определена именно на этом промежутке
Второе утверждение неверное исходя из первого
Третье утверждение верное, так как точка 0,5 является точкой максимума функции. Найдя производную и приравняв к нулю, получим (0)+[0,5]- что и доказывает данное утверждение
Четвертое утверждение неверное исходя из третьего
Пятое утверждение верное исходя из третьего
Шестое утверждение неверное исходя из третьего и пятого
Седьмое утверждение неверное т.к. при поиске производной мы найдем значение х =0,5 что является экстремумом функции
Восьмое утверждение неверное из седьмого
Девятое утверждение верное(доказал в третьем утверждении)
Десятое утверждение неверное так как точка 1 не является точкой экстремума
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.