Даны точки А(3;2) В(-1;5) С( 2;0) Д (-3; -4 ) . Найти координаты векторов АВ и ДС. Найти координаты вектора 2АВ -3 СД. 2..Докажите, что четырехугольник АВСД с вершинами А (8;-3) В (2; 5) С (10; 11) Д (16; 3) является параллелограммом.
Ясно, что в этом прямоугольном треугольнике есть не только угол в 60°, но и в 30°, т.к. в сумме острые углы составляют 90°. А против острого угла в 30° лежит катет, равный половине гипотенузы, т.е. 6 см. Тогда другой катет равен √(12²-6²)=6√3,
А в маленьком треугольнике, на которые разбивает высота исходный треугольник, тоже есть угол в 30°, против него лежит проекция катета в 6 см для исходного треугольника, для маленького же треугольника сторона в 6 см является гипотенузой, значит, эта проекция равна 3см, и 12-3=9/см/- больший из отрезков, на которые высота, проведенная к гипотенузе разбивает эту гипотенузу.
Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА)
Ясно, что в этом прямоугольном треугольнике есть не только угол в 60°, но и в 30°, т.к. в сумме острые углы составляют 90°. А против острого угла в 30° лежит катет, равный половине гипотенузы, т.е. 6 см. Тогда другой катет равен √(12²-6²)=6√3,
А в маленьком треугольнике, на которые разбивает высота исходный треугольник, тоже есть угол в 30°, против него лежит проекция катета в 6 см для исходного треугольника, для маленького же треугольника сторона в 6 см является гипотенузой, значит, эта проекция равна 3см, и 12-3=9/см/- больший из отрезков, на которые высота, проведенная к гипотенузе разбивает эту гипотенузу.
ответ 9 см
Объяснение:
Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА)