Объяснение:
Дано:
KLMN- ромб.
LN=6см
KM=10,4см.
<L=120°
<NOM=?
<OMN=?
<ONM=?
P=?
Решение.
<KLM=<KNM, свойство ромба.
Сумма углов прилежащих к одной стороне ромба равна 180°
<KLM+<LMN=180°
<LMN=180°-<KLM=180°-120°=60°
Диагонали ромба являются биссектриссами углов.
КМ- биссектрисса угла <LMN и <LKN
<OMN=<LMN:2=60°:2=30°
LN- биссектрисса угла <KNM и <KLM
<ONM=<KNM:2=120°:2=60°
Диагонали ромба пересекаются перпендикулярно.
<NOM=90°.
Рассмотрим треугольник ∆LNM
<NLM=<LNM=<LMN=60°.
Значит ∆LNM- равносторонний.
LN=NM=ML=6см.
В ромбе все стороны равны.
Р=4*LN=4*6=24см.
ответ: <NOM=90°; <ONM=60°; <OMN=30°. Периметр равен 24см.
Решение
Диагонали ромба пересекаются перпендикулярно и точкой пересечения делятся пополам.
ОN=LN:2=6:2=3см.
ОМ=КМ:2=10,4:2=5,2см.
По теореме Пифагора найдем
MN=√(ON²+OM²)=√(3²+5,2²)=√(9+27,04)=
=√36,04≈6 см. (Округлили до сотых)
Р=4*MN=4*6=24 см.
ответ: периметр 24.
Объяснение:
Дано:
KLMN- ромб.
LN=6см
KM=10,4см.
<L=120°
<NOM=?
<OMN=?
<ONM=?
P=?
Решение.
<KLM=<KNM, свойство ромба.
Сумма углов прилежащих к одной стороне ромба равна 180°
<KLM+<LMN=180°
<LMN=180°-<KLM=180°-120°=60°
Диагонали ромба являются биссектриссами углов.
КМ- биссектрисса угла <LMN и <LKN
<OMN=<LMN:2=60°:2=30°
LN- биссектрисса угла <KNM и <KLM
<ONM=<KNM:2=120°:2=60°
Диагонали ромба пересекаются перпендикулярно.
<NOM=90°.
Рассмотрим треугольник ∆LNM
<NLM=<LNM=<LMN=60°.
Значит ∆LNM- равносторонний.
LN=NM=ML=6см.
В ромбе все стороны равны.
Р=4*LN=4*6=24см.
ответ: <NOM=90°; <ONM=60°; <OMN=30°. Периметр равен 24см.
Решение
Диагонали ромба пересекаются перпендикулярно и точкой пересечения делятся пополам.
ОN=LN:2=6:2=3см.
ОМ=КМ:2=10,4:2=5,2см.
По теореме Пифагора найдем
MN=√(ON²+OM²)=√(3²+5,2²)=√(9+27,04)=
=√36,04≈6 см. (Округлили до сотых)
Р=4*MN=4*6=24 см.
ответ: периметр 24.
S(ABCD) --?
∠DAC =∠ACB ( как накрест лежащие углы ) ⇒∠BAС=∠ACB .те. треугольник
ABС равнобедренный (AB=BС =15 см ) . По известным сторонам можно определить площадь трапеции .
Проведем BE ⊥ AD . AE = (AD - BC)/2 =( 33 -15)/2 =9 (см ) .
Из прямоугольного ΔABE получаем BE =16 см * * * (3*3 ; 3*4 ;3*5 * * *
S(ABCD) = ((AD+BC)/2)*BE =((33+15)/2) *16 =384 (см² ).
* * * * * * * второй
Можно проведем BE || CD ;E ∈ [AD] .Треугольник ABE известен по трем сторонам: BE =CD ;CD; ED=AD - BC. S(ABCD)/S(ABE) =(AD+BC)/(AD-BC).
S(ABCD)S(ABE) = S(ABE) *(AD+BC)/(AD-BC) .
.