в ромбе ABCD два равных тупых угла (DAB, DCB) и два равных острых (ADC, ABC). Примите острый за х. AE -перпендикуляр из тупого угла к стороне DC, DE = EC. трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая) => в равных тр-ах против равных сторон лежат равные углы: ADE = ECA => ECA = ADC = ABC = x => DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса) сумма углов ромба равна 360 градусам => 2x + 2x +x + x = 360 ADC = ABC = x = 60 (острый угол ромба) DCB = DAB = 2х = 120 (тупой угол ромба).
cos∠B = 0
cos∠A = 0,6
cos∠C = 0,8
Объяснение:
Найдем длины сторон треугольника по формуле расстояния между точками:
Проверим по теореме, обратной теореме Пифагора, не является ли этот треугольник прямоугольным:
AC² = AB² + BC²
(5√2)² = (3√2)² + (4√2)²
50 = 18 + 32
50 = 50 - равенство верно, значит треугольник прямоугольный с гипотенузой АС.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Косинус прямого угла равен нулю.
cos∠B = 0
cos∠A = AB / AC = 3√2 / 5√2 = 3/5 = 0,6
cos∠C = BC / AC = 4√2 / 5√2 = 4/5 = 0,8
AE -перпендикуляр из тупого угла к стороне DC, DE = EC.
трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая)
=> в равных тр-ах против равных сторон лежат равные углы: ADE = ECA
=> ECA = ADC = ABC = x
=> DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса)
сумма углов ромба равна 360 градусам =>
2x + 2x +x + x = 360
ADC = ABC = x = 60 (острый угол ромба)
DCB = DAB = 2х = 120 (тупой угол ромба).