Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
ΔАВD=ΔСDВ ,как прямоугольные(∠ADB=∠CBD=90°) по равным гипотенузам BD-общая,и равным острым углам ∠ADB=∠CBD по условию. В равных треугольниках соответственные элементы равны ⇒∠ADB=∠CBD. . И эти углы накрест лежащие при DB-секущей⇒AD║BC . по признаку накрест лежащих углов.
2)Дано: на чертеже ∠А=70°,∠АОD=90°,∠С=20°.
Доказать: AD║BC .
Доказательтво.
ΔAOD-прямоугольный. По т. о сумме углов треугольника ∠ODA=180°-90°-70°=20°.
Углы ∠AOD= ∠BOC=20° и по расположению они накрест лежащие⇒AD║BC при CD-секущей по признаку накрест лежащих углов.
3) Дано :ΔАВС-прямоугольный, ∠С=60°,∠ВВ₁⊥АС, ВВ₁=2 см.
Найти :АВ.
Решение.
ΔАВС-прямоугольный, ∠С=60°, значит ∠ВАС=90°-60°=30° по свойству острых углов прямоугольного треугольника..
ΔАВВ₁ -прямоугольный , ∠ВАС=30° .По свойству угла в 30° имеем ВВ₁=1/2*АВ или 2=1/2*АВ или АВ=4 см
Объяснение:
1)Дано :на рисунке ∠ADB=∠CBD=90° , ∠ADB=∠CBD.
Доказать :AD║BC
Доказательство.
ΔАВD=ΔСDВ ,как прямоугольные(∠ADB=∠CBD=90°) по равным гипотенузам BD-общая,и равным острым углам ∠ADB=∠CBD по условию. В равных треугольниках соответственные элементы равны ⇒∠ADB=∠CBD. . И эти углы накрест лежащие при DB-секущей⇒AD║BC . по признаку накрест лежащих углов.
2)Дано: на чертеже ∠А=70°,∠АОD=90°,∠С=20°.
Доказать: AD║BC .
Доказательтво.
ΔAOD-прямоугольный. По т. о сумме углов треугольника ∠ODA=180°-90°-70°=20°.
Углы ∠AOD= ∠BOC=20° и по расположению они накрест лежащие⇒AD║BC при CD-секущей по признаку накрест лежащих углов.
3) Дано :ΔАВС-прямоугольный, ∠С=60°,∠ВВ₁⊥АС, ВВ₁=2 см.
Найти :АВ.
Решение.
ΔАВС-прямоугольный, ∠С=60°, значит ∠ВАС=90°-60°=30° по свойству острых углов прямоугольного треугольника..
ΔАВВ₁ -прямоугольный , ∠ВАС=30° .По свойству угла в 30° имеем ВВ₁=1/2*АВ или 2=1/2*АВ или АВ=4 см