Даны точки A(8;10) и B(4;4). Найди координаты точек C и D, если известно, что точка B — середина отрезка AC, а точка D — середина отрезка BC. C=( ; ) D=( ; )
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
Объём воды в сосуде находится по формуле:
V=Sосн.*h- где S - площадь основания; h- уровень воды
Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR²
Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2)
уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR²
Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд:
4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза)
Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет:
15см*4=60см
ответ: Уровень воды в другом сосуде составит 60см