Даны точки M(2; 3), P(-2; 0), O(0; 0), K(-5; -12), R(4; у). а) Найдите координаты векторов МР и ОК.
б) Найдите длины векторов МР и ОК.
в) Найдите скалярное произведение векторов МР и ОК.
г) Найдите косинус угла между векторами МР и ОК.
д) Данный угол острый, прямой или тупой (ответ обоснуйте)?
е) При каком значении у векторы РК и МR перпендикулярны?
2. В равностороннем треугольнике МНР НК – биссектрисса, МН = 2. Вычислите скалярные произведения векторов НК МР, НК НР, РМ РМ
Дана равнобокая трапеция АВСД
Бока АВ=СВ =
Угол А = углу Д = 45градусов
Опустим из точки В на основание АД высоту ВН
Рассмотрим треугольник АВН
АВ=
угол А =45градусов
Можно выразить высоту ВН
косинус угла А = высота ВН / АВ
BH=
Далее по теореме Пифагора можно найти второй катет АН:
решая это, находим, что АН=
Опустим из точки С трапеции еще одну высоту СК. Аналогичный треугольник. ДК=АН=
НК=ВС=4 (т.к. прямоугольник)
Следовательно основание трапеции АД=
Площадь трапеции = полусумме оснований умноженной на высоту:
Построим произвольно луч.Возьмем циркуль.
Отложим на луче отрезок, равный отрезку а раствором циркуля равным длине отрезка а и проведем окружность с центром в начале луча этим радиусом . Получим точки точки В и С.
Циркулем отмерим отрезок b. C центром в точке В проведем окружность радиусом равным длине отрезка b. Потом циркулем отмерим отрезок с. C центром в точке C проведем окружность радиусом равным длине отрезка c. Получим точку А .
Соединим точку А с точками В и С. Получим треугольник АВС.