Даны точки M(3;1); N(4;-2); E(1,5;-1,5); F(0;-3).
___ ___
1. Найдите координаты векторов MN и EF.
__ ___
2. Найдите вектор, равный EF – MN.
___ __
3. Найдите косинус угла между векторами MN и EF.
___ ___ ___ __
4. Пусть вектор MD= 2 ∙ MN, а вектор FP = 3∙ FE. Найдите координаты точек D и P.
5. Постройте в координатной плоскости четырехугольник MFDP.
__ ___ ___ ___
Выразите вектор FP через векторы MF и MP, а вектор MD через
___ __
векторы MP и PD.
6. Докажите, что ∆ PMD – прямоугольный.
∠АMN=90 °; ∠ACN= 90 °.
Сумма противоположных углов четырехугольника СNMA равна 180 °, значит около четырехугольника CNMA можно описать окружность.
∠СMN=∠CAN как вписанные углы, опирающиеся на одну и ту же дугу NC.
б)
Так как точка М– середина гипотенузы является центром окружности, описанной около треугольника АВС, то
ВM=AM=CM
Треугольник CMB – равнобедренный, так как СM=BM.
Треугольник ANB – равнобедренный, так как NM – серединный перпендикуляр к АВ, поэтому BN=AN.
Угол В в этих треугольниках общий.
По теореме синусов из треугольника АNB
BN/sin∠B=2R1, R1– радиус окружности, описанной около треугольника ANB.
По теореме синусов из треугольника СМВ:
СM/sin ∠B=2R2
R2– радиус окружности, описанной около треугольника СМВ
Значит
R1/R2=BN/CM, так как СМ=ВМ.
R1/R2=BN/BM
Рассмотрим прямоугольный треугольник ВNM:
cos∠B=BM/BN
R1/R2=1/cos∠B
По условию
tg∠A=4/3 ⇒ 1+tg2∠A=1/cos2∠A
значит
cos2∠A=1/(1+tg2∠A)=1/(1+(4/3)2)=9/25
так как угол А –острый, то cos∠A=3/5
sin∠A=4/5
sin∠A=cos∠B
R1/R2=1/cos∠B=1/(4/5)=5/4
О т в е т. 5/4
Пусть квадрат СКМН вписан в треугольник АВС, причем точка М лежит на АВ.
Примем сторону квадрата равной х.
Тогда АК=12-х, ВН=10-х
Площадь ∆ АВС состоит из площади двух прямоугольных треугольников и площади квадрата.
S АВС=Ѕ АКМ+Ѕ МВН+Ѕ КМНС. ⇒
12•10=(12-х)•х+(10-х)•х+2х²⇒
120=22х⇒
см
————
Или:
Проведем биссектрису СМ .
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
АМ:ВМ=АС:ВС=12/10=
Откуда АВ=11 частей, и СВ:х=АВ:АМ=11/6⇒
11х=60
см
———
Можно использовать также подобие треугольников АКМ и МНВ, из чего следует
АК:МН=КМ:ВН - ответ будет, естественно, тем же.