5. На рисунке прямые CD и EF параллельны сторонам треугольника ABC. Найдите углы треугольника CED, если ∠A = 72°, ∠B = 26°
Рассмотрим ΔABC
∠C = 180 - ∠A - ∠B = 180 - 72 - 26 = 82° (сумма углов треугольника равна 180°)
Рассмотрим четырехугольник AFEC
∠F = 180 - ∠A = 180 - 72 = 108° (односторонние при FD || AC и секущей AB)
∠E = 180 - ∠C = 180 - 82 = 98° (односторонние при FD || AC секущей BC)
∠CED = 180 - ∠FEC = 180 - 98 = 82° (смежные)
Рассмотрим четырехугольник AEDC
FD || AC (по условию)
AF || CD (по условию)
==> четырехугольник AEDC - параллелограмм
∠A = ∠D = 72° (в параллелограмме противоположные углы равны)
Рассмотрим ΔCED: ∠E = 82°, ∠D = 72°, ∠C - ?
∠C = 180 - ∠E - ∠D = 180 - 82 - 72 = 26° (сумма углов треугольника равна 180°)
ответ: ∠E = 82°, ∠D = 72°, ∠C = 26°
6. На рисунке треугольники ABC и DEF - прямоугольные, AB = DF, BC = DE. Докажите, что прямые AB и DF параллельны.
Рассмотрим ΔDEB и ΔBCA - прямоугольные
AB = DF (по условию)
BC = DE (по условию)
==> ΔDEB = ΔBCA по гипотенузе и катету ==> ∠F = ∠A - накрест лежащие для прямых DF и AB и их секущей AF
При параллельных прямых и их секущей накрест лежащие углы равны
==> DF || AB
Ч. т. д.
По данным координатам вершин определим длины их его сторон.
АВ2 = (Х2 – Х1)2 + (У2 – У1)2 = (1 – (-3))2 + (2 – (-1))2 = 16 + 9 = 25.
АВ = 5 см.
ВС2 = (5 – 1)2 + (-1 – 2)2 = 16 + 9 = 25.
ВС = 5 см.
СД2 = (1 – 5)2 + (-4 – (-1))2 = 16 + 9 = 25.
СД = 5 см.
АД2 = (1 – (-3))2 + (-4 – (-1))2 = 16 + 9 = 25.
АД = 5 см.
Все четыре стороны равны 5 см, четырехугольник квадрат или ромб. Определим длины диагоналей.
АС2 = (5 – (-3))2 + (-1 – (-1))2 = 64 + 0 = 64.
АС = 8 см.
ВД2 = (1 – 1)2 + (-4 – 2)2 = 0 + 36 = 36.
ВД = 6 см.
Диагонали разной длины, следовательно, четырехугольник ромб, что и требовалось доказать.
5. На рисунке прямые CD и EF параллельны сторонам треугольника ABC. Найдите углы треугольника CED, если ∠A = 72°, ∠B = 26°
Рассмотрим ΔABC
∠C = 180 - ∠A - ∠B = 180 - 72 - 26 = 82° (сумма углов треугольника равна 180°)
Рассмотрим четырехугольник AFEC
∠F = 180 - ∠A = 180 - 72 = 108° (односторонние при FD || AC и секущей AB)
∠E = 180 - ∠C = 180 - 82 = 98° (односторонние при FD || AC секущей BC)
∠CED = 180 - ∠FEC = 180 - 98 = 82° (смежные)
Рассмотрим четырехугольник AEDC
FD || AC (по условию)
AF || CD (по условию)
==> четырехугольник AEDC - параллелограмм
∠A = ∠D = 72° (в параллелограмме противоположные углы равны)
Рассмотрим ΔCED: ∠E = 82°, ∠D = 72°, ∠C - ?
∠C = 180 - ∠E - ∠D = 180 - 82 - 72 = 26° (сумма углов треугольника равна 180°)
ответ: ∠E = 82°, ∠D = 72°, ∠C = 26°
6. На рисунке треугольники ABC и DEF - прямоугольные, AB = DF, BC = DE. Докажите, что прямые AB и DF параллельны.
Рассмотрим ΔDEB и ΔBCA - прямоугольные
AB = DF (по условию)
BC = DE (по условию)
==> ΔDEB = ΔBCA по гипотенузе и катету ==> ∠F = ∠A - накрест лежащие для прямых DF и AB и их секущей AF
При параллельных прямых и их секущей накрест лежащие углы равны
==> DF || AB
Ч. т. д.
По данным координатам вершин определим длины их его сторон.
АВ2 = (Х2 – Х1)2 + (У2 – У1)2 = (1 – (-3))2 + (2 – (-1))2 = 16 + 9 = 25.
АВ = 5 см.
ВС2 = (5 – 1)2 + (-1 – 2)2 = 16 + 9 = 25.
ВС = 5 см.
СД2 = (1 – 5)2 + (-4 – (-1))2 = 16 + 9 = 25.
СД = 5 см.
АД2 = (1 – (-3))2 + (-4 – (-1))2 = 16 + 9 = 25.
АД = 5 см.
Все четыре стороны равны 5 см, четырехугольник квадрат или ромб. Определим длины диагоналей.
АС2 = (5 – (-3))2 + (-1 – (-1))2 = 64 + 0 = 64.
АС = 8 см.
ВД2 = (1 – 1)2 + (-4 – 2)2 = 0 + 36 = 36.
ВД = 6 см.
Диагонали разной длины, следовательно, четырехугольник ромб, что и требовалось доказать.