а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
52 см.
Объяснение
1. Углы трапеции равны, следовательно, трапеция - равнобедренная → AB = CD, BM = CN и AM = DN
2. Вспомним свойство трапеции: В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
В трапецию вписана окружность, следовательно, сумма длин оснований AD и BC равна сумме длин боковых сторон AB и CN.
AD + BC = AB + CD
AB = AM + MB = 9 + 4 = 13 см
CD = DN + CN = 9 + 4 = 13 см
отсюда AD + BC = 13 + 13 = 26 см
3. Периметр трапеции - сумма длин её сторон.
P = AD + BC + AB + CD = (AD + BC) + AB + CD = 26 + 13 + 13 = 52 см