даны точки с координатами A 3 -2 B с координатами 1 - 4 - 2 и 0 д36 найти координаты вектора B C и D A B найти координаты 3D 8 BC и в косинус угла между векторами B C и D решение
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
Дано:
ABCD — прямоугольник,
AC ∩ BD=O,
∠AOD=φ.
Найти: ∠ACD.
Решение:
1) ∠DOC=180º-∠AOD=180º-φ (как смежные).
ugol mezhdu diagonalyami pryamougolnika raven
2) Треугольник COD — равнобедренный с основанием CD
(OC=OD по свойству диагоналей прямоугольника).
Тогда
\[\angle OCD = \frac180}^o} - \angle AOD}}{2} = \frac180}^o} - ({{180}^o} - \varphi )}}{2} = \]
\[ = \frac180}^o} - {{180}^o} + \varphi }}{2} = \frac{\varphi }{2}.\]
(как угол при основании равнобедренного треугольника).
\[\angle ACD = \angle OCD = \frac{\varphi }{2}.\]
ответ: φ/2.
ugol mezhdu diagonalyu i storonoy pryamougolnika
Около любого прямоугольника можно описать окружность. Центр описанной около прямоугольника окружности — точка пересечения его диагоналей.
∠ACD — вписанный угол, ∠AOD — соответствующий ему центральный угол. Следовательно,
∠ACD=½ ∠AOD=φ/2.
Задача 2. (обратная к задаче 1)
Угол между диагональю прямоугольника и его большей стороной равен α. Найти меньший угол между диагоналями прямоугольника.
ugol mezhdu diagonalyu i storonoy pryamougolnika
1) Треугольник COD — равнобедренный с основанием CD
(так как OC=OD по свойству диагоналей прямоугольника).
Угол при вершине равнобедренного треугольника
∠COD=180º-2∠OCD=180º-2α.
2) ∠AOD=180º-∠COD (как смежные),
∠AOD=180º-(180º-2α)=180º-180º+2α=2α.
ответ: 2α.
Вывод: острый угол между диагоналями прямоугольника в два раза больше угла между диагональю прямоугольника и его большей стороной.
Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:
а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.
б) уравнение медианы BM.
Находим координаты точки М как середины стороны АС.
М(((-2+1)/2; (1+3)/2) = (-0,5; 2).
Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).
Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.
Оно же в общем виде 7у – 2х – 15 = 0.
И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).
в) cos угла BCA.
Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.
Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.
cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.
г) уравнение высоты CD.
Находим уравнение стороны АВ.
Вектор AB = ((3-(-2)); (3-1)) = (5; 2).
Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).
Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.
0 = (-5/2)*1 + b. Отсюда b = 5/2.
Уравнение CD: y = (-5/2)x + (5/2).
д) длина высоты СD.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = (A·Mx + B·My + C)/√A2 + B2
Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:
2х – 5у + 9 = 0.
d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =
= 11/√29 = 11√29/29 ≈ 2.0426487.
е) площадь треугольника АВС по векторам.
Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:
S= ± (1 /2) *(x1−x3 y1−y3 )
(x2−x3 y2−y3 )
x1−x3 y1−y3
x2−x3 y2−y3
A(−2,1), B(3,3), С(1,0).
S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.