Касательная к окружности- прямая имеющая одну общую точку с окружностью (следовательно её не пересекает) касательная всегда перпендикулярна радиусу из указанных сторон треугольника сразу видно что этот треугольник прямоугольный (по пифагору: 25=16+9) с прямым углом в. протяжённость вс по условию 3, центр окружности с, радиус =3, следовательно вс-радиус из прямоугольности треугоугольника выходит что вс перпендикулярен ав , тобишь ав перпендикулярно радиусу и имеет с окружностью только одну общую точку в, следовательно ав-касательная
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²