Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Исследуемый четырехугольник - трапеция, подобная данной. Площади подобных фигур относятся друг к другу как квадраты их линейных размеров.
Высота данной трапеции равна sqrt[((24 - 12)/2)^2 + 10^2] = 8.
Площадь данной трапеции равна (12 + 24)*8/2 = 144.
Радиусы вписанных окружностей равны 1, в высоте их вмещается два. Следовательно, высота искомой трапеции равна 8 - 1 - 1 = 6. Высоты этих трапеций относятся как 6/8 = 3/4. Значит, площади трапеций будут относиться друг к другу как 9/16.
И площадь искомого четырехугольника будет равна 144*9/16 = 81.
Исследуемый четырехугольник - трапеция, подобная данной. Площади подобных фигур относятся друг к другу как квадраты их линейных размеров.
Высота данной трапеции равна sqrt[((24 - 12)/2)^2 + 10^2] = 8.
Площадь данной трапеции равна (12 + 24)*8/2 = 144.
Радиусы вписанных окружностей равны 1, в высоте их вмещается два. Следовательно, высота искомой трапеции равна 8 - 1 - 1 = 6. Высоты этих трапеций относятся как 6/8 = 3/4. Значит, площади трапеций будут относиться друг к другу как 9/16.
И площадь искомого четырехугольника будет равна 144*9/16 = 81.
ответ: 81.