Сумма внешних углов любого выпуклого n-угольника равна 360° Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. Внешний и внутренний углы составляют развернутый угол, их сумма равна 180°. Тогда внутренний угол равен для правильных:
n=4 В основании призмы квадрат со стороной а, квадрат вписан в окружность. Диагональ квадрата является диаметром окружности а²+а²=(2R)² ⇒ 2a²=4R² ⇒a²=2R²
Сумма внешних углов любого выпуклого n-угольника равна 360° Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. Внешний и внутренний углы составляют развернутый угол, их сумма равна 180°. Тогда внутренний угол равен для правильных:
треугольника – 180°-(360°:3)=60°
четырёхугольника – 180°-(360°:4)=90°
пятиугольника – 180°-(360°:5)=108°
шестиугольника – 180°-(360°:6)=120°
десятиугольника – 180°-(360°:10)=144°
восемнадцатиугольника 180°-(360°:18)=160°
В основании призмы правильный треугольник cо стороной а.
Треугольник вписан в окружность радиуса R
Выразим радиус через сторону треугольника
R=a√3/3 ( По формуле R=abc/4S=a·a·a/4·a²√3/4)
a=R√3
V(призмы):V(цилиндра)=(S(Δ)·H):(πR²·H)=(a²√3/4):(πR²)=
=((R√3)²·√3/4):(πR²)=(3√3)/(4π)
n=4
В основании призмы квадрат со стороной а, квадрат вписан в окружность.
Диагональ квадрата является диаметром окружности
а²+а²=(2R)² ⇒ 2a²=4R² ⇒a²=2R²
V(призмы):V(цилиндра)=(S(квадрата)·H):(πR²·H)=(a²):(πR²)=
=(2R²):(πR²)=2/π
2.
S(осн. цилиндра)=πR²
πR²=Q ⇒ R=√(Q/π)
S(осевого сечения)=диаметр·высоту=2R·H
2R·H=S ⇒ H=S/(2R)
V(цилиндра)=πR²·H=πR²·(S/2R)=(π·R·S)/2=π·√(Q/π)·S/2=S·√(πQ)/2