Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны.
I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.
II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
даны координаты вершин треугольника авс: а(0; -10),в(-12; -1),с(4; 12).найти:
1. длину стороны ав:
ав (с) = √((хв-ха)²+(ув-уа)²) = √225 = 15.
2. уравнение сторон ав и ас:
ав : х-ха = у-уа х = у + 10
хв-ха ув-уа -12 9
9х = -12у -120 сократим на 3 и перенесём налево:
3х + 4у + 40 = 0.
у(ав) = -0,75х - 10.
ас : х-ха = у-уа
хс-ха ус-уа
11х - 2у - 20 = 0
у = 5,5х - 10
3. величину угла а:
cos a= ав²+ас²-вс² = 0,4472136.
2*ав*ас
a = 1,107149 радиан.
a = 63,434949 градусов.
4. уравнение высоты cd и ее длину.
к(сд) = -1/к(ав) = -1/(-0,75) = 4/3.
у = (4/3)х + в. для определения "в" подставим координаты точки с:
12 = (4/3)*4 + в, в = 12 - (16/3) = 20/3.
уравнение сд: у = (4/3)х + (20/3).
длину сд можно определить двумя способами: сд = 2s/ab и по координатам точек с и д.
приравниваем уравнения ав и сд: -0,75х - 10 = (4/3)х + (20/3),
(-25/12)х = (20/3) + 10 = 50/3,
х = (50/3)/(-25/12) = (-600/75) = -8,
у = (-3/4)*(-8) - 10 = 6 - 10 = -4. точка d: (-8; -4).
длина сд = √((-8-4)² + (-4-12)²) = √(144 + 256) = √400 = 20.
5. уравнение медианы ве.
точка е как середина ас: (2; 1).
ве: х-хв = у-ув х + 12 = у + 1
хе-хв уе-ув 14 2
знаменатели сократим на 2: х + 12 = 7у + 7.
общее уравнение ве: х - 7у + 5 = 0,
с угловым коэффициентом: у = (1/7)х + (5/7).
6. координаты точки к пересечения медианы ве и высоты cd.
(1/7)х + (5/7) = (4/3)х + (20/3),
(-25/21)х = (125/21)
х = -125/25 = -5, у = (1/7)*(-5) + (5/7) = 0. точка к: (-5; 0).
7. уравнение прямой кр, проходящей через точку к параллельно стороне ав.
угловой коэффициент равен -0,75.
уравнение кр: у = (-0,75)х + в. подставим координаты точки к(-5; 0):
0 = (-0,75)*(-5) + в, в = - (15/4) = -3,75.
у = (-0,75)х - 3,75.
8. координаты точки м, расположенной симметрично точке а относительно прямой cd.
так как cd - перпендикуляр к прямой ав, то точка d(-8; -4) - это та точка, относительно которой требуется найти точку, симметричной точке а.
xm = 2xd - xa = 2*(-8) - 0 = -16,
ym =2yd - ya = 2*(-4) - (-10) = -8 + 10 = 2.
точка м(-16, 2).
объяснение:
I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.
II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.