В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tinn1
tinn1
14.01.2023 22:40 •  Геометрия

Даны три точки M1(-1;2+b), M2(2;4-b), M3(4;5+2b) 1) Составьте уравнение прямой перпендикулярной прямой M1 M2 и проходящей через точку M3
2) ) Составьте уравнение прямой параллельной прямой М1 М2 и проходящей через точку М3


Даны три точки M1(-1;2+b), M2(2;4-b), M3(4;5+2b) 1) Составьте уравнение прямой перпендикулярной прям

Показать ответ
Ответ:
ABAYMALGAZHDAROvvv
ABAYMALGAZHDAROvvv
13.01.2024 15:23
1) Чтобы составить уравнение прямой, перпендикулярной прямой М1 М2 и проходящей через точку М3, нам нужно найти угловой коэффициент (наклон) перпендикулярной прямой.

Начнем с определения углового коэффициента между прямыми М1 М2 и М3:

Угловой коэффициент между двумя точками (x1, y1) и (x2, y2) на прямой вычисляется по формуле:
m = (y2 - y1) / (x2 - x1)

Применяя эту формулу к точкам М1(-1, 2+b) и М2(2, 4-b), получим:
m1 = (4-b - (2+b)) / (2 - -1)
= (4-b - 2-b) / (2 + 1)
= (2 - 2b)/3

Теперь, чтобы найти угловой коэффициент перпендикулярной прямой, мы можем воспользоваться следующим свойством: угловые коэффициенты двух перпендикулярных прямых являются отрицательно обратными.

Таким образом, угловой коэффициент перпендикулярной прямой будет равен:
m2 = -1 / m1
= -3 / (2 - 2b)

Теперь, зная угловой коэффициент и точку М3(4, 5+2b), мы можем использовать формулу уравнения прямой:

Уравнение прямой y = mx + c, где m - угловой коэффициент, x и y - координаты точки на прямой, c - свободный член (смещение).

Подставляя значения m2, x и y в уравнение, получаем:
5 + 2b = (-3 / (2 - 2b)) * 4 + c

Упростим это уравнение:
5 + 2b = -12 / (2 - 2b) + c

Теперь найдем значение c, используя точку М3:
5 + 2b = -12 / (2 - 2b) + c
5 + 2b + 12 / (2 - 2b) = c

Таким образом, уравнение прямой, перпендикулярной М1 М2 и проходящей через точку М3, будет иметь вид:
y = (-3 / (2 - 2b)) * x + (5 + 2b + 12 / (2 - 2b))

2) Чтобы составить уравнение прямой, параллельной прямой М1 М2 и проходящей через точку М3, нам снова понадобится угловой коэффициент (наклон) параллельной прямой.

Угловой коэффициент прямой М1 М2 мы уже вычислили в предыдущем шаге и это m1 = (2 - 2b) / 3.

Так как параллельные прямые имеют одинаковый угловой коэффициент, угловой коэффициент параллельной прямой будет таким же:
m2 = (2 - 2b) / 3

Теперь, зная угловой коэффициент и точку М3(4, 5+2b), мы можем использовать формулу уравнения прямой:
y = mx + c, где m - угловой коэффициент, x и y - координаты точки на прямой, c - свободный член (смещение).

Подставляя значения m2, x и y в уравнение, получаем:
5 + 2b = ((2 - 2b) / 3) * 4 + c

Упростим это уравнение:
5 + 2b = (8 - 8b) / 3 + c

Теперь найдем значение c, используя точку М3:
5 + 2b = (8 - 8b) / 3 + c
5 + 2b - (8 - 8b) / 3 = c

Таким образом, уравнение прямой, параллельной М1 М2 и проходящей через точку М3, будет иметь вид:
y = ((2 - 2b) / 3) * x + (5 + 2b - (8 - 8b) / 3)

Надеюсь, это решение поможет вам лучше понять, как составить уравнение прямой, перпендикулярной и параллельной заданным прямым и проходящей через заданную точку.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота