Даны три точки в пространстве A(1;-2;4), B(3;4;-2) и C(0;-6;2). Найти: 1)координаты вектора ВС 2)координаты вектора ВС-ВА 3)координаты точки D такой что ABСD- параллелограмм 4)расстояние от точки А до точки D С пояснениями
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
А) Опустим перпендикуляр из точки пересечения медиан на сторону ВС. Заметим, что эта высота равна данному нам расстоянию √3см. В прямоугольном треугольнике ОВН угол ОВН=60° (дано). Значит ОВ=ОН/Sin60 или ОВ=√3*2/√3=2см. Медианы делится точкой их пересечения в отношении 2:1, считая от вершины. Значит ОВ =(2/3)*BD, тогда ВD=ОВ*3/2= 3 cм. ответ: BD=3см. б) Если <ABD=30°, то <ABC=<ABD+<DBC=30°+60°=90°. То есть треугольник АВС прямоугольный (<В=90°), в котором медиана из прямого угла равна половине гипотенузы, то есть BD=AD=DC. Тогда треугольник DBC равнобедренный и <C=<DBC=60°. В прямоугольном треугольнике АВС угол С=60°. Значит АВ=АС*Sin60°=3√3см. ответ: АВ=3√3см.
Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
Значит ОВ =(2/3)*BD, тогда ВD=ОВ*3/2= 3 cм.
ответ: BD=3см.
б) Если <ABD=30°, то <ABC=<ABD+<DBC=30°+60°=90°. То есть треугольник АВС прямоугольный (<В=90°), в котором медиана из прямого угла равна половине гипотенузы, то есть BD=AD=DC. Тогда треугольник DBC равнобедренный и <C=<DBC=60°.
В прямоугольном треугольнике АВС угол С=60°. Значит АВ=АС*Sin60°=3√3см.
ответ: АВ=3√3см.