Даны вектора: m (-3; 4), a (x; -2), n (5; 6). найдите: a) косинус угла между векторами m и n б) число x, если векторы m и a коллинеарны в) число x, если векторы n и a перпендикулярны
Каждое основание n-угольной призмы имеет n сторон.
Ребра снования, общие с боковыми гранями, параллельны друг другу ( лежат в параллельных плоскостях) и составляют n пар двугранных углов - по одному при верхнем и нижнем основании. . Сумма этих углов при каждой грани равна сумме линейных углов при ребрах верхнего и нижнего основания.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Сумма углов, образующихся при этом у каждого ребра основания, равна сумме внутренних углов, образующихся при пересечении параллельных прямых секущей, т.е. 180°.
Следовательно, сумма двугранных углов, прилежащих к ребрам обоих оснований, равна n•180°
Для примера рассмотрим четырехугольную призму АВСDD1А1В1С1
Сумма двугранных углов КМН+ТНМ = 180°,
а сумма всех двугранных углов 4-угольной призмы равна 180•4=720°
Высота треугольника пересекаются в одной точке, называемой отроцентром треугольника, значит высота ОК, проведённая к стороне АВ, проходит через точку М, следовательно МО⊥АВ. В треугольнике АМО высота, проведённая к стороне МО равна АК, а в треугольнике ВМО такая же высота равна ВК. S(АМО)=МО·АК/2=25·АК/2=12.5АК, S(ВМО)=МО·ВК/2=12.5ВК.
S(АОВМ)=S(АМО)+S(ВМО)=12.5(АК+ВК)=12.5АВ=12.5·60=750 мм² - это ответ.
------------------------------- Можно рассмотреть четырёхугольник АОВМ. В нём МО и АВ - диагонали, они перпендикулярны. S(АОВМ)=(d1·d2·sinα)/2=(MO·AB·sin90)/2=25·60·1/2=750 мм².
Каждое основание n-угольной призмы имеет n сторон.
Ребра снования, общие с боковыми гранями, параллельны друг другу ( лежат в параллельных плоскостях) и составляют n пар двугранных углов - по одному при верхнем и нижнем основании. . Сумма этих углов при каждой грани равна сумме линейных углов при ребрах верхнего и нижнего основания.
Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Сумма углов, образующихся при этом у каждого ребра основания, равна сумме внутренних углов, образующихся при пересечении параллельных прямых секущей, т.е. 180°.
Следовательно, сумма двугранных углов, прилежащих к ребрам обоих оснований, равна n•180°
Для примера рассмотрим четырехугольную призму АВСDD1А1В1С1
Сумма двугранных углов КМН+ТНМ = 180°,
а сумма всех двугранных углов 4-угольной призмы равна 180•4=720°
В треугольнике АМО высота, проведённая к стороне МО равна АК, а в треугольнике ВМО такая же высота равна ВК.
S(АМО)=МО·АК/2=25·АК/2=12.5АК,
S(ВМО)=МО·ВК/2=12.5ВК.
S(АОВМ)=S(АМО)+S(ВМО)=12.5(АК+ВК)=12.5АВ=12.5·60=750 мм² - это ответ.
-------------------------------
Можно рассмотреть четырёхугольник АОВМ. В нём МО и АВ - диагонали, они перпендикулярны. S(АОВМ)=(d1·d2·sinα)/2=(MO·AB·sin90)/2=25·60·1/2=750 мм².