Угол между хордой и касательной равен половине градусной меры дуги, стягиваемой этой хордой (свойство), то есть половине градусной меры дуги АВ.
На дугу АВ опирается центральный угол АОБ, значит дуга АВ = 120°. Значит угол между касательной и хордой в точке касания равен 120°:2 = 60°
ответ: искомый угол равен 60°.
Или так:
В равнобедренном треугольнике АОВ (стороны ОА и ОВ равны - радиусы) углы при основании равны по (180-120):2=30° (сумма углов треугольника = 180°). Касательная в точке касания перпендикулярна радиусу, значит искомый угол равен 90° - 30° = 60°.
ответ: 60°
Задача: Радиус окружности, описанной около квадрата, равен 26√2. Найти радиус окружности, вписанной в этот квадрат.
Радиус окружности, описанной около квадрата, (R) равен полудиагонали этого квадрата, то есть вся диагональ (d) равна:
d = 2R = 2*26√2=52√2
Используя т. Пифагора, найдем длину стороны (a) квадрата:
(отрицательное значение отбрасывает — не подходит по условию задачи)
Радиус окружности, вписанной в этот квадрат, (r) равен половине его стороны:
ответ: Радиус окружности, вписанной в квадрат, равен 26.
Угол между хордой и касательной равен половине градусной меры дуги, стягиваемой этой хордой (свойство), то есть половине градусной меры дуги АВ.
На дугу АВ опирается центральный угол АОБ, значит дуга АВ = 120°. Значит угол между касательной и хордой в точке касания равен 120°:2 = 60°
ответ: искомый угол равен 60°.
Или так:
В равнобедренном треугольнике АОВ (стороны ОА и ОВ равны - радиусы) углы при основании равны по (180-120):2=30° (сумма углов треугольника = 180°). Касательная в точке касания перпендикулярна радиусу, значит искомый угол равен 90° - 30° = 60°.
ответ: 60°
Задача: Радиус окружности, описанной около квадрата, равен 26√2. Найти радиус окружности, вписанной в этот квадрат.
Радиус окружности, описанной около квадрата, (R) равен полудиагонали этого квадрата, то есть вся диагональ (d) равна:
d = 2R = 2*26√2=52√2
Используя т. Пифагора, найдем длину стороны (a) квадрата:
(отрицательное значение отбрасывает — не подходит по условию задачи)
Радиус окружности, вписанной в этот квадрат, (r) равен половине его стороны:
ответ: Радиус окружности, вписанной в квадрат, равен 26.