Прямоугольный треугольник СНD равнобедренный и катет HD равен катету СН = 8 (как противоположные стоороны прямоугольника АВСН).
Модуль суммы векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosβ, где β - угол, смежный с углом α между векторами.
Модуль разности векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosα, где α - угол между векторами.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения СОНАПРАВЛЕННОСТИ с другим вектором. Итак,
1. При пересечении двух прямых образуются два смежных и два вертикальных угла. Сумма смежных равна 180 радусов, значит 150 - это сумма вертикальных. Вертикальные углы равны, значит каждый угол равен 150:2=75.
3. Нам даны смежные углы, потому что один больше другого. Пусть меньший угол равен х, тогда больший угол 8х. сумма двух углов х+8х, а по теореме о смежных углах 180. Уравнение: х+8х=180 9х=180 х= 180:9 х=20, тогда 8х=8*20=160 ответ: При пересечении двух прямых образовались два угла по 20 градусов и два угла по 160 градусов каждый.
4. Угол в 120 градусов будет смежным. Поэтому угол образованный биссектрисой равен 180-120=60. Он же является половиной угла, который просят найти, значит искомый угол равен 60*2=120.
|AC| = 10 см.
Объяснение:
Опустим высоту СН на основание AD трапеции.
Прямоугольный треугольник СНD равнобедренный и катет HD равен катету СН = 8 (как противоположные стоороны прямоугольника АВСН).
Модуль суммы векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosβ, где β - угол, смежный с углом α между векторами.
Модуль разности векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosα, где α - угол между векторами.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения СОНАПРАВЛЕННОСТИ с другим вектором. Итак,
Вектор DC = НС - HD или
|DC| = √(CH²+HD²-2*CH*HD*Cos90) = √(64+64-0) = 8√2.
Вектор АС = AD + DC или
|AC| = √(AD²+DC²-2*CH*HD*Cos45) или
|AC| = √(196+128-2*14*8√2*(√2/2)) = √100 = 10.
ответ: Длина вектора (модуль) АС = 10 см.
2. Биссектриса делит угол пополам. Значит угол АВК=АВС:2= 130:2=65.
3. Нам даны смежные углы, потому что один больше другого. Пусть меньший угол равен х, тогда больший угол 8х. сумма двух углов х+8х, а по теореме о смежных углах 180. Уравнение:
х+8х=180
9х=180
х= 180:9
х=20, тогда 8х=8*20=160
ответ: При пересечении двух прямых образовались два угла по 20 градусов и два угла по 160 градусов каждый.
4. Угол в 120 градусов будет смежным. Поэтому угол образованный биссектрисой равен 180-120=60. Он же является половиной угла, который просят найти, значит искомый угол равен 60*2=120.