Обратим внимание на то, что ON и OM являются перпендикулярами к катетам прямоугольного треугольника, поскольку нам необходимо найти расстояние KN и KM.
Рассмотрим отрезок NO. Он является перпендикуляром к CB. Угол ACB также вляется прямым по условию задачи. Таким образом, треугольники ABC и OBN - подобны по признаку равенства углов (см. подобие треугольников). Угол В - общий, а, поскольку CA и NO являются перпендикулярами к CB - то остальные углы также равны (один прямой, второй равен 180 градусов минус сумма остальных углов, равенство которых мы уже доказали).
Коэффициент подобия треугольников равен соотношению BO к BA. Поскольку точка О - точка касания медианы прямоугольного треугольника к гипотенузе, то есть AO = OB, то коэффициент подобия будет равен 1:2.
Когда нам дано, что подобны треугольники, то, чтобы записать пропорциональность сторон, имеется два 1)смотрим на рисунок и определяем пропорциональность исходя из признака. 2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы. Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым Т.к. подобны треугольники WMF и WAV, то записывается это так: WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню). Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон: WM/WA = WF/WV WM=WA*WF/WV = 26*19/24,7 = 20(дм). Теперь определим признак подобия. Их всего 3: 1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. 2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны. 3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет. Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный. ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
Объяснение:
Обратим внимание на то, что ON и OM являются перпендикулярами к катетам прямоугольного треугольника, поскольку нам необходимо найти расстояние KN и KM.
Рассмотрим отрезок NO. Он является перпендикуляром к CB. Угол ACB также вляется прямым по условию задачи. Таким образом, треугольники ABC и OBN - подобны по признаку равенства углов (см. подобие треугольников). Угол В - общий, а, поскольку CA и NO являются перпендикулярами к CB - то остальные углы также равны (один прямой, второй равен 180 градусов минус сумма остальных углов, равенство которых мы уже доказали).
Коэффициент подобия треугольников равен соотношению BO к BA. Поскольку точка О - точка касания медианы прямоугольного треугольника к гипотенузе, то есть AO = OB, то коэффициент подобия будет равен 1:2.
Откуда ON = CA / 2 = 9 / 2 = 4,5
Расстояние же KN найдем по теореме Пифагора.
KN = √(4,52 + 62 ) = 7,5 см
Аналогично, найдем расстояние до второго катета:
OM = CB / 2 = 12 / 2 = 6
KN = √( 62 + 62 ) = √72 = 6√2 см
ответ: 7,5 см, 6√2 см
1)смотрим на рисунок и определяем пропорциональность исходя из признака.
2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы.
Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым
Т.к. подобны треугольники WMF и WAV, то записывается это так:
WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню).
Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон:
WM/WA = WF/WV
WM=WA*WF/WV = 26*19/24,7 = 20(дм).
Теперь определим признак подобия. Их всего 3:
1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны.
3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет.
Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный.
ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)