1) Обозначим с=12 см, а=6 см По теореме Пифагора второй катет b²=c²-a²=12²-6²=144-36=108 b=√108=6√3 см Объем призмы равен произведению площади основания на высоту. Площадь прямоугольного треугольника равна половине произведения катетов. ответ. 6√3·6·10=360√3 куб.см.
2) Обозначим а=b=12, с=16. По теореме Пифагора найдем высоту равнобедренного треугольника h²=a²-(c/2)²=12²-8²=144-36=108, h=√108=6√3 см. Объем пирамиды V = 1/3 S·H=1/3 ·1/2· 16· 6√3=16√3 куб см
3) S (полн)= 2 S (осн) + S (бок)= 2π·R²+π·R·H По условию R=D|2=15 см, S ( полн)=600 π кв. см. 600·π=2·π·(15)²+π·15·Н 600π=450π+15·π·Н, 15πН=150π Н=10 см V (цилиндра)= S (осн)·Н=π R²·H=π·15²·10=2250·π куб. см
4) Угол при вершине осевого сечения 120°, значит углы при основании (180°-120°)/2=30° В прямоугольном треугольнике ( высота конуса перпендикулярна диаметру основания) против угла в 30° лежит катет, равный половине гипотенузы. Если высота 5, значит образующая 10. По теореме Пифагора R²=10²-5²=100-25=75 R=5√3 V(конуса)= 1/3 S(осн)·Н=1/3 π(5√3)²·5=125π куб см.
1) 6 см4 2) 18 см; 3)MN=12 (см); 4.12√3(см); 5. ∠1=30°, ∠2= 60°, катет= 12√3 см; 6. 64/√3≈37.6 cм; 7. 20/√3≈11,5 см 8. 4 см і 4√3 см.
Пояснення: с- гіпотенуза, а і b- катети
1.Інший кут(протилежний до заданого)катета=180°-(90°+30°)=60° за теоремою синусів прилеглий катет а =12*sin 60°=12*√3/2=6 √3(см)
2. коли кут = 45°, то інший кут теж рівен 45°- трикутник рівнобедрений,
с²=2а².(см)
3. за теоремою синусів : /*2
MN=12 (см)
4. як у першій задачі катет=24*sin 60°=24*√3/2=12√3(см)
5. якщо у прямокутному Δ, катет= 1/2 гіпотенузи, то це катет, що лежить проти кута в 30°.
відповідь: ∠1=30°, ∠2= 60°, катет= 12√3 см.
6. За властивостями ромба : його діагоналі є бісектрисами кутів, у точці перетину ділять себе навпіл, та є перпендикулярні одна до другої. Так як один з кутів 120°, то поділений діагоналю навпіл= 120°:2=60°., трикутник утворений цією діагоналлю буде рівностороннім, так як протилежні кути в ромбу рівні, а сума усіх кутів Δ=60°. Друга напівдіогональбуде висотою цього трикутника( бо діагоналі утворюють між собою прямий кут) Знайдемо сторону ромбу , с²=8²+(с/2)²
4с²-с²=64*4; 3с²=256.
P=4*16/√3=64/√3≈37.6 cм
7. за теоремою Піфагору знайдемо сторону в утвореному висотою прямокутному трикутнику с²=10²+ (с/2)²;3с²=400. с= √( 400/3)=20/√3≈11,5 см
8. Діагоналі ромба ділять його на 4-ри прямокутних трикутники, які попарно рівні. Так як діагоналі ромба є його бісектрисами,то утворені трикутники мають кути 30°,60°,90°. тоді менша гіпотинуза = 2*2= 4см, а більша 2√3*2=4√3 см
По теореме Пифагора второй катет b²=c²-a²=12²-6²=144-36=108
b=√108=6√3 см
Объем призмы равен произведению площади основания на высоту.
Площадь прямоугольного треугольника равна половине произведения катетов.
ответ. 6√3·6·10=360√3 куб.см.
2) Обозначим а=b=12, с=16.
По теореме Пифагора найдем высоту равнобедренного треугольника
h²=a²-(c/2)²=12²-8²=144-36=108, h=√108=6√3 см.
Объем пирамиды V = 1/3 S·H=1/3 ·1/2· 16· 6√3=16√3 куб см
3) S (полн)= 2 S (осн) + S (бок)= 2π·R²+π·R·H
По условию R=D|2=15 см, S ( полн)=600 π кв. см.
600·π=2·π·(15)²+π·15·Н
600π=450π+15·π·Н,
15πН=150π
Н=10 см
V (цилиндра)= S (осн)·Н=π R²·H=π·15²·10=2250·π куб. см
4) Угол при вершине осевого сечения 120°, значит углы при основании (180°-120°)/2=30°
В прямоугольном треугольнике ( высота конуса перпендикулярна диаметру основания) против угла в 30° лежит катет, равный половине гипотенузы. Если высота 5, значит образующая 10.
По теореме Пифагора R²=10²-5²=100-25=75
R=5√3
V(конуса)= 1/3 S(осн)·Н=1/3 π(5√3)²·5=125π куб см.
Відповідь:
1) 6 см4 2) 18 см; 3)MN=12 (см); 4.12√3(см); 5. ∠1=30°, ∠2= 60°, катет= 12√3 см; 6. 64/√3≈37.6 cм; 7. 20/√3≈11,5 см 8. 4 см і 4√3 см.
Пояснення: с- гіпотенуза, а і b- катети
1.Інший кут(протилежний до заданого)катета=180°-(90°+30°)=60° за теоремою синусів прилеглий катет а =12*sin 60°=12*√3/2=6 √3(см)
2. коли кут = 45°, то інший кут теж рівен 45°- трикутник рівнобедрений,
с²=2а².(см)
3. за теоремою синусів : /*2
MN=12 (см)
4. як у першій задачі катет=24*sin 60°=24*√3/2=12√3(см)
5. якщо у прямокутному Δ, катет= 1/2 гіпотенузи, то це катет, що лежить проти кута в 30°.
відповідь: ∠1=30°, ∠2= 60°, катет= 12√3 см.
6. За властивостями ромба : його діагоналі є бісектрисами кутів, у точці перетину ділять себе навпіл, та є перпендикулярні одна до другої. Так як один з кутів 120°, то поділений діагоналю навпіл= 120°:2=60°., трикутник утворений цією діагоналлю буде рівностороннім, так як протилежні кути в ромбу рівні, а сума усіх кутів Δ=60°. Друга напівдіогональбуде висотою цього трикутника( бо діагоналі утворюють між собою прямий кут) Знайдемо сторону ромбу , с²=8²+(с/2)²
4с²-с²=64*4; 3с²=256.
P=4*16/√3=64/√3≈37.6 cм
7. за теоремою Піфагору знайдемо сторону в утвореному висотою прямокутному трикутнику с²=10²+ (с/2)²;3с²=400. с= √( 400/3)=20/√3≈11,5 см
8. Діагоналі ромба ділять його на 4-ри прямокутних трикутники, які попарно рівні. Так як діагоналі ромба є його бісектрисами,то утворені трикутники мають кути 30°,60°,90°. тоді менша гіпотинуза = 2*2= 4см, а більша 2√3*2=4√3 см