Мы помним, что объем параллелепипеда равен Sосн. h. А объем пирамиды равен 1\3*Sосн.* h. Иными словами, если у параллелепипеда и пирамиды одинаковые основания и одинаковые высоты, то объем пирамиды будет в три раза меньше, чем объем параллелепипеда. А у нашей пирамиды еще и площадь основания в два раза меньше. Значит, ее объем в шесть раз меньше объема параллелепипеда.
объем параллелепипеда.=6*обєм пирамиды =6*3=18
2)площадь основания = 1/2(а*в) где а и в-диагонали
площадь основания = 1/2(3*4)=6
сторону ромба можно найти по формуле С^2 = (d1^2+d2^2)4= (3^2+4^2)4=6.25 c(сторона ромба)=2,5
Определение: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям)".
Итак, <ABC=90°, АВ=ВС (дано).
Опустим перпендикуляры из вершины В на плоскость α и гипотенузу АС. Тогда <BHP является линейным углом двугранного угла между плоскостями АВС и α по определению. Пусть катеты треугольника АВС равны "а". ВН - высота из прямого угла равнобедренного треугольника АВС. ВН = а√2/2. В прямоугольном треугольнике ВНР острый угол равен 45°, значит треугольник равнобедренный и ВР = ВН*√2/2 = а√2/2*(√2/2) = а/2. В прямоугольном треугольнике ВРС угол ВСР - это угол между наклонной ВС и ее проекцией РС на плоскость α, то есть это угол между наклонной и плоскостью по определению.
Відповідь:объем параллелепипеда 18; S призмы=62
Пояснення:
Мы помним, что объем параллелепипеда равен Sосн. h. А объем пирамиды равен 1\3*Sосн.* h. Иными словами, если у параллелепипеда и пирамиды одинаковые основания и одинаковые высоты, то объем пирамиды будет в три раза меньше, чем объем параллелепипеда. А у нашей пирамиды еще и площадь основания в два раза меньше. Значит, ее объем в шесть раз меньше объема параллелепипеда.
объем параллелепипеда.=6*обєм пирамиды =6*3=18
2)площадь основания = 1/2(а*в) где а и в-диагонали
площадь основания = 1/2(3*4)=6
сторону ромба можно найти по формуле С^2 = (d1^2+d2^2)4= (3^2+4^2)4=6.25 c(сторона ромба)=2,5
S боковая = 4(с*h)=4(5*2.5)=50
SПризмы = Sбоковая +2Sосн.=50+6+6=62
Определение: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям)".
Итак, <ABC=90°, АВ=ВС (дано).
Опустим перпендикуляры из вершины В на плоскость α и гипотенузу АС. Тогда <BHP является линейным углом двугранного угла между плоскостями АВС и α по определению. Пусть катеты треугольника АВС равны "а". ВН - высота из прямого угла равнобедренного треугольника АВС. ВН = а√2/2. В прямоугольном треугольнике ВНР острый угол равен 45°, значит треугольник равнобедренный и ВР = ВН*√2/2 = а√2/2*(√2/2) = а/2. В прямоугольном треугольнике ВРС угол ВСР - это угол между наклонной ВС и ее проекцией РС на плоскость α, то есть это угол между наклонной и плоскостью по определению.
Sin(<BCP) = ВР/ВС или Sin(<BCP) = а/2/а =1/2. =>
<BCP = arcsin(1/2) = 30°. Это ответ.