Обозначим сторону квадрата в основании пирамиды за х. Площадь основания So = x². Высота Н = √((6√3)²-(x√2/2)²) = √(108-(x²/2)) = √(216-x²)/√2. Объём пирамиды V = (1/3)SoH = (1/3)x²*√(216-x²)/√2 = x²*√(216-x²)/3√2. Находим производную функции объёма:
Для нахождения экстремума приравняем производную нулю. Для этого достаточно приравнять числитель нулю. -х(х²-144) = 0, х = 0 (это значение отбрасываем, объём Vmin = 0). х²-144 = 0 х = +-√144 = +-12.
Трапеция АВСД, уголА=уголВ=90, АВ/СД=4/5, АД-ВС=9, ВД=20
проводим высоту СН,=АВ, АВСН прямоугольник, ВС=АН, НД = АД-АН =9,
треугольник НСД, НД= корень (СД в квадрате - СН в квадрате) = корень(25-16)=3
НД = 3 части = 9 см, 1 часть = 9/3 =3, АВ = 4 х 3 =12, СД= 5 х 3 =15
треугольник АВД прямоугольный АН=а, НД=9, АД=а+9
ВД в квадрате = АВ в квадрате+АД в квадрате
400 = 144 + а в квадрате +18а + 81
а в квадрате + 18а - 175 = 0
а = (-18+- корень(324 + 4 х 175))/2
а = (-18+-32)/2
а=7 = АН=ВС, АД=7+9=16
средняя линия = (ВС+АД)/2 =(7+16)/2=11,5
Площадь основания So = x².
Высота Н = √((6√3)²-(x√2/2)²) = √(108-(x²/2)) = √(216-x²)/√2.
Объём пирамиды V = (1/3)SoH = (1/3)x²*√(216-x²)/√2 = x²*√(216-x²)/3√2.
Находим производную функции объёма:
Для нахождения экстремума приравняем производную нулю. Для этого достаточно приравнять числитель нулю.
-х(х²-144) = 0,
х = 0 (это значение отбрасываем, объём Vmin = 0).
х²-144 = 0
х = +-√144 = +-12.
Vmax = (1/3)*12²*√(108-(144/2)) = (1/3)*144*√36 = 144*6/3 = 288 куб.ед.