Т.к. средние линии треугольника в два раза больше сторон, которые им параллельны, то периметр большого треугольника будет равен 60 см. Пусть стороны треугольника будут равны 4x; 5x; 6x, а их сумма (периметр) равен 60 Составим и решим уравнение 4x+5x+6x=60 15x=60 x=4 4×4=16 - одна из сторон большого треугольника 4×5=20 - другая сторона треугольника 4×6=24 - третья сторона треугольника. Средняя линия треугольника в два раза меньше стороны, с которой параллельна, значит, средние линии равны 12, 8, 10 ( делили на два) Усё :))
информация о том, что центром окружности, описанной около равностороннего треугольника является точка пересечения медиан, является лишней.
Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров.
Срединными перпендикулярами любого равностороннего треугольника являются его высоты, они же медианы и биссектрисы.
Поэтому радиус R описанной около правильного треугольника окружности равен 2/3 его высоты h
h=a•sin 60°, где а - сторона треугольника, а углы равностороннего треугольника раны 60°.
h=6•√3/2=3√3
R=(3√3)•2/3=2√3 см
———————
3) Медиана делит исходный треугольник на два, у которых основания равны, а высота, проведенная из общей вершины, является для них также общей. (см. рисунок)
S(ABL)=AH•DL/2
S(ACL)=AH•CL/2
Так как BL=CL, то площади этих треугольников равны, а площадь каждого равна половине площади ∆ АВС, т.е.18:2=9 см².
---------
Мы получили свойство медианы треугольника, которое полезно запомнить:
Медиана треугольника делит его на два равновеликих, т.е. на треугольники с равной площадью.
Пусть стороны треугольника будут равны 4x; 5x; 6x, а их сумма (периметр) равен 60
Составим и решим уравнение
4x+5x+6x=60
15x=60
x=4
4×4=16 - одна из сторон большого треугольника
4×5=20 - другая сторона треугольника
4×6=24 - третья сторона треугольника.
Средняя линия треугольника в два раза меньше стороны, с которой параллельна, значит, средние линии равны 12, 8, 10 ( делили на два)
Усё :))
информация о том, что центром окружности, описанной около равностороннего треугольника является точка пересечения медиан, является лишней.
Центром окружности, описанной около треугольника, является точка пересечения его срединных перпендикуляров.
Срединными перпендикулярами любого равностороннего треугольника являются его высоты, они же медианы и биссектрисы.
Поэтому радиус R описанной около правильного треугольника окружности равен 2/3 его высоты h
h=a•sin 60°, где а - сторона треугольника, а углы равностороннего треугольника раны 60°.
h=6•√3/2=3√3
R=(3√3)•2/3=2√3 см
———————
3) Медиана делит исходный треугольник на два, у которых основания равны, а высота, проведенная из общей вершины, является для них также общей. (см. рисунок)
S(ABL)=AH•DL/2
S(ACL)=AH•CL/2
Так как BL=CL, то площади этих треугольников равны, а площадь каждого равна половине площади ∆ АВС, т.е.18:2=9 см².
---------
Мы получили свойство медианы треугольника, которое полезно запомнить:
Медиана треугольника делит его на два равновеликих, т.е. на треугольники с равной площадью.