Даны вершины треугольника а (1; -1), в (9; 5), с (4; -5). найти: а) длину сторон ав и ас; б) внутренний угол при вершине а; в) уравнение стороны вс; г) уравнение высоты ан; д) уравнение медианы см; е) систему неравенств, определяющих треугольник.
ответ:Оба треугольника прямоугольные,по условию задачи
<R=<C=90 градусов
<SEF=<REF,по условию задачи
Мы знаем,что два угла одного треугольника равны двум углам другого треугольника,следовательно,
<RFE=<SFE
Теперь докажем,что треугольники ERF и ESF равны между собой
ЕF- общая сторона
<RFE=<SFE, только что мы это доказали
<SEF=<REF по условию задачи
По второму признаку равенства треугольников-если сторона и два прилегающих к ней угла одного треугольника равны стороне и двум прилегающим к ней углам другого треугольника,то эти треугольники равны между собой
Треугольники ERF и ESF равны между собой и FR=SF=6,3 cм
ответ: ∠А=60°; ∠В=120°; ∠С=60°; ∠D=120°.
Объяснение:
Периметр ромба равен 24см,
а длина одной диагонали 6см.
Вычислите углы ромба.
Решение.
По свойству ромба все его стороны равны.
Р=4а, где а - сторона ромба.
а=Р/4=24/4=6 см.
Все стороны равны 6 см и диагональ равна 6 см. Следовательно Диагональ делит ромб на два равносторонних треугольника.
По свойству равносторонних треугольников все его углы равны, т.е. 180° : 3= 60°.
∠А=60°; ∠В=120°; ∠С=60°; ∠D=120°.
Сумма углов в четырехугольнике равна 360°:
2*60° + 2*120° = 120° +240° = 360°. Всё верно!
ответ:Оба треугольника прямоугольные,по условию задачи
<R=<C=90 градусов
<SEF=<REF,по условию задачи
Мы знаем,что два угла одного треугольника равны двум углам другого треугольника,следовательно,
<RFE=<SFE
Теперь докажем,что треугольники ERF и ESF равны между собой
ЕF- общая сторона
<RFE=<SFE, только что мы это доказали
<SEF=<REF по условию задачи
По второму признаку равенства треугольников-если сторона и два прилегающих к ней угла одного треугольника равны стороне и двум прилегающим к ней углам другого треугольника,то эти треугольники равны между собой
Треугольники ERF и ESF равны между собой и FR=SF=6,3 cм
Объяснение: