1. Измерить провести окружность с центром в вершине неразвернутого угла и радиусом, равным длине отрезка. 2. Соединить точки пересечения окружности со сторонами угла. 3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы. 4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
∢К=∢М=180-60=120°
MK=12*2=24
S ромба=0,5*d1*d2
Обозначим вторую диагональ(NL) через х:
288√3=0,5*24*x
Х=24√3(NL)
По теореме Пифагора найдём сторону ромба:
(12√3)²+12²=432+144=576
√576=24
Мы знаем что все стороны ромба одинаковые, найдём периметр:
Р=24+24+24+24=96мм
р=96÷2=48мм
∢ МКN=120÷2=60
Значит другой угол равен:
180-(60+90)=30°(∢О)
По теореме сторона лежащий против 30° равен половине гипотенузы:
Гипотенуза ОК=12
12÷2=6(катет)
По теореме Пифагора найдём другой катет(r)
144-36=108
r=√108=6√3
Площадь круга:
S=пr²=108п
ответ:р=48мм
r=6√3 мм
S=108п