Рассмотрим 2треугольника ВОК и KNC .Их стороны ОВ=NC, по условию ввиду серединности точек О и N на равных сторонах равнобедренного треугольника.Угол О равен углу N по условию. Угол В равен углу С как в равнобедренных при основании.Поэтому треугольники равны.Значит ВК =КС, и является медианой в ВСД, а так же его высотой.Значит угол ВДК равен ВДС/2=48*/2=24*;Так как это равнобедренный треугольник, то углы при основании ВСД будут равны. Находим угол СВД, он равен (180*-48*)/2=66*; ответ:/_ ВДС=24*;СВД=66*
24
Объяснение:
1) Средняя линия равна полусумме оснований, следовательно:
(ВС + АD) : 2 = 21
2) Так как ВС ║ АD как основания трапеции, то ΔВLC подобен треугольнику АLD.
3) Рассчитаем коэффициент подобия, пологая, что LC = 3x, а CD = x.
LD = LC + CD = 3х + х = 4 х
Тогда коэффициент подобия равен:
LD : LC = 4х : 3 х = 4/3
4) Таким образом, если AD = 4/3 ВС, в силу чего выражение
(ВС + АD) : 2 = 21
можно записать как:
(ВС + 4/3 ВС) : 2 = 21
Находим ВС:
(ВС + 4/3 ВС) = 42
2 1/3 ВС = 42
ВС = 18
AD = ВC · 4/3 = 18 · 4/3 = 24
ответ: AD = 24