даю 10 !! висота проведена з вершини тупого кута ромба ділитьйого сторони на відрізки завдовжки 5 см і 8 см рахуючи від вершини гострого кута.Знайдіть площі частин,на які ділить ромб ця висот
Где S — площадь круга, R — радиус круга 2. Площадь круга вписанного в квадрат. S = пи * (a / 2)2
3. Площадь круга описанного около квадрата. S = пи * 0.5*a2
Где a — длина стороны квадрата.
В этом случае радиус круга равен 0.5*a*√‾2, используя формулу 1, получаем ф Где a, A — сторона и противолежащий угол соответственно, p — полупериметр.
Можем записать формулу площади круга вписанного в треугольник: S = пи * ((p-a)*tg(A/2))² 5. Площадь круга описанного около треугольника. Используя формулу радиуса описанной окружности R = a/(2*sin(A))
Где a, A — сторона и противолежащий угол соответственно.
Можем записать формулу площади круга описанного около треугольника: S = пи * (a/(2*sin(A)))²
Объяснение:
1)На рисунке DC и DB касательные к окружности с центром A, ∠САВ=124°.Найти ∠CDB.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания. ∠АСD= ∠АВD=90°.
АВDС- четырехугольник. Сумма углов четырехугольника 360°.
∠CDB=360°-90°-90°-124°=56°
2)Из одной точки круга проведен диаметр и хорду, которая равна радиусу круга. Найдите угол между ними
Пусть диаметр АВ, хорда АС, О-центр окружности. Известно, что ОА=СА.
ΔОСА-равносторонний, т.к. ОА=ОС как радиусы, ОА=СА по условии.
Значит все углы равны 180°:3=60 °
Угол между хордой и диаметром 60°
S = пи * R2
Где S — площадь круга, R — радиус круга
2. Площадь круга вписанного в квадрат.
S = пи * (a / 2)2
3. Площадь круга описанного около квадрата.
S = пи * 0.5*a2
Где a — длина стороны квадрата.
В этом случае радиус круга равен 0.5*a*√‾2, используя формулу 1, получаем ф
Где a, A — сторона и противолежащий угол соответственно, p — полупериметр.
Можем записать формулу площади круга вписанного в треугольник:
S = пи * ((p-a)*tg(A/2))²
5. Площадь круга описанного около треугольника.
Используя формулу радиуса описанной окружности
R = a/(2*sin(A))
Где a, A — сторона и противолежащий угол соответственно.
Можем записать формулу площади круга описанного около треугольника:
S = пи * (a/(2*sin(A)))²