Опусти перпендикуляр из вершины С на АД: СМ ⊥ АД .
Тогда ВСМН - прямоугольник , противоположные стороны которого равны, ВС=МН и ВН=СМ , но так как по условию ВС=ВН, то ВСМН - квадрат, сторону которого обозначим "а" .
ΔАВН - прямоугольный, с углом ∠А=45° . Тогда и ∠АВН=90°-45°=45° .
ответ: h=5 см .
АВСД - трапеция, АВ=СД , ∠А=∠Д=45° ,
ВС=а , ВН ⊥ АД , h=ВН=ВС=а , S(трап)=50см² .
Опусти перпендикуляр из вершины С на АД: СМ ⊥ АД .
Тогда ВСМН - прямоугольник , противоположные стороны которого равны, ВС=МН и ВН=СМ , но так как по условию ВС=ВН, то ВСМН - квадрат, сторону которого обозначим "а" .
ΔАВН - прямоугольный, с углом ∠А=45° . Тогда и ∠АВН=90°-45°=45° .
То есть ΔАВН - равнобедренный и АН=ВН=а .
Аналогично, из ΔСДМ получаем, что ДМ=СМ=а .
Тогда АД=АН+НМ+МД=а+а+а=3а .
Площадь трапеции :
По условию:
ответ:Номер 1
Диагонали прямоугольника в точке пересечения делятся пополам
Треугольник АОВ равнобедренный
<АВО=<ВАО=42 градуса
<ВОА=180-42•2=180-84=96 градусов
<АОD=(360-96•2):2=168:2=84 градуса
Номер 2
<1=<2=90 градусов
<3=35 градусов
<4=180-35=145 градусов
Номер 3
Одна сторона 2Х
Вторая 3Х
2Х•2+3Х•2=30
10Х=30
Х=30:10
Х=3
Одна сторона 3•2=6 см
Вторая 3•3=9 см
Номер 4
Углы при большом основании
<1=<2=106:2=53 градуса
Углы при меньшем основании
(360-53•2):2=127 градусов
<3=<4=127 градусов
Объяснение: