Даю 30Б ! 1. Точка S рівновіддалена від сторін прямокутного трикутника, які дорівнюють 8, 8 і 12 см, і віддалена від його площини на
19см. Знайдіть відстань від точки S до сторін трикутника.
2. З точок А і В, які лежать у перпендикулярних площинах, опущено перпендикуляри АА1 і ВВ1 на лінію перетину площин. Знайти АВ, якщо АВ1=14 см, ВА1=10 см, А1В1=2√10 см.
Точка А принадлежит прямой, значит её координаты удовлетворяют уравнению
х=1, у=-4
-4=k·1+b (*)
Точка В принадлежит прямой, значит её координаты удовлетворяют уравнению
х=5, у=2
2=k·5+b (**)
Решаем систему двух уравнений (*) и (**)
Вычитаем из первого уравнения второе:
-6=-4k ⇒ k=3/2=1,5
b=-4-k=-4-1,5=-5,5
ответ. у=1,5х-5,5
Второй
Применяем формулу уравнения прямой, проходящей через две точки
Применяем основное свойство пропорции: произведение крайних членов пропорции равно произведению средних
-6(х-5)=-4(у-2)
-6х+30=-4у+8
6х-4у-22=0
3х-2у-11=0
или
у=1,5х-5,5
Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х.
Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см².
Высота ВН разделила ΔАВD на два треугольника с одной высотой h.
Определим площадь каждого из этих треугольников.
S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh.
S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh
Сумма площадей этих треугольников равна площади ΔАВD=30 см².
1,5хh+хh=30,
2,5хh=30,
h=30/2,5х=12/х.
Вычислим площадь ΔАВМ.
S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см².
ответ: 18 см².